Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 89(9): 2468-2482, 2024 May.
Article in English | MEDLINE | ID: mdl-38747961

ABSTRACT

17α-methyltestosterone (MT) hormone is a synthetic androgenic steroid hormone utilized to induce Nile tilapia transitioning for enhanced production yield. This study specifically focuses on the removal of MT through the utilization of photocatalytic membrane reactor (PMR), which employs an in-house polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with 1% nanomaterials (either TiO2 or α-Fe2O3). The molecular weight cut-off (MWCO) of the in-house membrane falls within the ultrafiltration range. Under UV95W radiation, the PMR with PVDF/TiO2 and PVDF/α-Fe2O3 membranes achieved 100% MT removal at 140 and 160 min, respectively. The MT removal by the commercial NF03 membrane was only at 50%. In contrast, without light irradiation, the MT removal by all the membranes remained unchanged after 180 min, exhibiting lower performance. The incorporation of TiO2 and α-Fe2O3 enhanced water flux and MT removal of the membrane. Notably, the catalytic activity was limited by the distribution and concentration of the catalyst at the membrane surface. The water contact angle did not correlate with the water flux for the composited membrane. The degradation of MT aligned well with Pseudo-first-order kinetic models. Thus, the in-house ultrafiltration PMR demonstrated superior removal efficiency and lower operational costs than the commercial nanofiltration membrane, attributable to its photocatalytic activities.


Subject(s)
Membranes, Artificial , Methyltestosterone , Ultrafiltration , Water Pollutants, Chemical , Ultrafiltration/methods , Water Pollutants, Chemical/chemistry , Methyltestosterone/chemistry , Catalysis , Water Purification/methods , Titanium/chemistry
2.
Water Res ; 217: 118435, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35430468

ABSTRACT

The characteristics of dissolved organic matter (DOM) play an important role in the formation and speciation of carcinogenic disinfection byproducts. This study investigated changes in the characteristics and reactivity of DOM caused by the magnetic ion exchange resins, MIEX® DOC and MIEX® GOLD, using fluorescence excitation-emission matrix (EEM) with parallel factor (PARAFAC) analysis and Orbitrap mass spectrometry (Orbitrap MS) with unknown screening analysis. A five-component PARAFAC model was developed and validated from 208 EEMs of raw and MIEX®-treated water samples. The two resins exhibited preferential removal of the humic-like components (67-87% removal) and successfully removed protein-like components to a lesser extent (5-61% removal). Unknown screening analysis indicated removal of most condensed aromatic structures and lignin-like features that had high O/C values and refractory characteristics of lipid-like features by MIEX® treatments. MIEX® preferentially removed DOM molecules with more oxidized and shorter CH2 chains. The two resins had similar performance in trihalomethanes formation potential removal, but MIEX® GOLD achieved greater haloacetonitriles formation potential removal owing to its larger pore opening. Over 100 CHOCl DBP features were commonly found in all the samples while tens of CHOCl DBPs were uniquely formed in the samples with and without pre-treatments by MIEX®. Treatments by MIEX® before chlorination resulted in more intermediate CHOCl DBPs formed after chlorination compared to chlorinated raw waters. By optical spectroscopic analysis together with Orbitrap MS molecular characterization, we were able to confirm both quantitative and qualitative changes in DOM properties by MIEX® treatment related to DBP formation.


Subject(s)
Water Pollutants, Chemical , Water Purification , Disinfection , Dissolved Organic Matter , Ion Exchange , Ion Exchange Resins , Magnetic Phenomena , Mass Spectrometry , Spectrum Analysis , Water Pollutants, Chemical/analysis , Water Purification/methods
3.
Membranes (Basel) ; 11(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34564466

ABSTRACT

The characteristics of foulant in the cake layer and bulk suspended solids of a 10 L submerged anaerobic membrane bioreactor (AnMBR) used for treatment of palm oil mill effluent (POME) were investigated in this study. Three different organic loading rates (OLRs) were applied with prolonged sludge retention time throughout a long operation time (270 days). The organic foulant was characterized by biomass concentration and concentration of extracellular polymeric substances (EPS). The thicknesses of the cake layer and foulant were analyzed by confocal laser scanning microscopy and Fourier transform infrared spectroscopy. The membrane morphology and inorganic elements were analyzed by field emission scanning electron microscope coupled with energy dispersive X-ray spectrometer. Roughness of membrane was analyzed by atomic force microscopy. The results showed that the formation and accumulation of protein EPS in the cake layer was the key contributor to most of the fouling. The transmembrane pressure evolution showed that attachment, adsorption, and entrapment of protein EPS occurred in the membrane pores. In addition, the hydrophilic charge of proteins and polysaccharides influenced the adsorption mechanism. The composition of the feed (including hydroxyl group and fatty acid compounds) and microbial metabolic products (protein) significantly affected membrane fouling in the high-rate operation.

4.
Sci Total Environ ; 796: 148954, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34271382

ABSTRACT

The presence of natural organic matter (NOM) in groundwater could play an important role in the removal of contaminants by nanoscale zero-valent iron (NZVI). NOM has a heterogeneous structure and can be divided into 6 fractions based on polarity and charges: hydrophobic acid (HPOA), hydrophobic base (HPOB), hydrophobic neutral (HPON), hydrophilic acid (HPIA), hydrophilic base (HPIB), and hydrophilic neutral (HPIN). The objective of this study was to evaluate the interactions between NOM fractions and NZVI using two approaches: 1) the interaction between NOM fraction isolates and NZVI and 2) bulk NOM fractionation before and after reaction with NZVI. Two sources of NOM-groundwater (GWNOM), Khon Kaen, Thailand and Suwannee River NOM (SRNOM), USA-were examined. The isolated NOM had more interactions with NZVI at pH 5 compared to pH 7 and 9 for both GWNOM and SRNOM. HPOA of GWNOM had the highest adsorption capacity (qe) of 6.95 mg/g (pH 5), and that was also the case for HPIA of SRNOM (18.66 mg/g, pH 5). HPIN of both GWNOM and SRNOM yielded the lowest qe among the six fractions. The adsorption capacities of NOM fractions were well correlated with specific ultraviolet absorbance. Fluorescence excitation-emission spectra revealed that protein-like components preferentially reacted with NZVI. The results of bulk NOM fractionation after reacting with NZVI indicated that NOM not only adsorbed on NZVI but also reacted with NZVI and transformed to become more hydrophilic and neutral. This study's findings suggest that different NOM fractions had varying interactions with NZVI. The acid fractions tended to interact more than the other fractions. This work provides a deeper understanding of the reactivity between NOM and NZVI.


Subject(s)
Groundwater , Water Pollutants, Chemical , Iron , Rivers , Thailand , Water Pollutants, Chemical/analysis
5.
Chemosphere ; 282: 131061, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34102490

ABSTRACT

Concentration and chemical composition of dissolved organic matter (DOM) play a major role in formation and speciation of disinfection by-products, such as trihalomethanes (THMs), in water treatment plants (WTPs) during disinfection. This study characterized DOM across the process trains of WTPs using fluorescence excitation emission matrices (EEMs) together with parallel factor analysis (PARAFAC). The PARAFAC model was developed from 216 EEMs of bimonthly water samples from three WTPs in Khon Kaen, Thailand, from May 2018 to Mar 2019. Three PARAFAC components identified were humic-like DOM of terrestrial, and microbial or agricultural origin, while the one protein-like component was previously defined as tryptophan-like fluorophore. The relationships between water quality parameters, including the maximum fluorescent intensities (Fmax) of PARAFAC components and THM formation potential (THM-FP) were investigated using Spearman's rank correlation. The Fmax of PARAFAC components, UVA254, DOC, and THM-FP were greater in dry season. Chloroform was the primary THM formed at two sites using surface water as their water source, while the site using surface water with saline groundwater intrusion had higher concentration of brominated THMs. Results indicated that Fmax of humic-like components extracted by PARAFAC analysis were the most accurate THM-FP surrogate parameter assessed for the water samples tested and the correlations between Fmax and THM-FP were site specific (ρ = 0.81-0.85). The result demonstrates that fluorescence spectroscopy analysis has yielded insights into relationships between the DOM optical characteristics and their total THM-FP even at sites with different speciation of THMs.


Subject(s)
Trihalomethanes , Water Purification , Factor Analysis, Statistical , Humic Substances/analysis , Seasons , Spectrometry, Fluorescence , Thailand , Trihalomethanes/analysis
6.
Chemosphere ; 277: 130284, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33774230

ABSTRACT

Membrane fouling by dissolved organic matter (DOM), especially microbially-derived DOM, is a major challenge for ultrafiltration (UF) membranes in water purification. Fouling may be mitigated by pretreating feed waters; however, there are no comprehensive studies that compare the fouling reduction efficacies across different pretreatment processes. Further, there is a limited understanding of the relationship between fouling reduction efficacy and microbially-derived DOM removal from source waters. Accordingly, the objectives of this study were to: (i) evaluate and compare the efficacies of five pretreatment processes in reducing UF membrane fouling by DOM; and (ii) investigate whether a relationship exists between membrane fouling reduction and microbially-derived DOM removal by pretreatment processes. We investigated seven water sources and a polyvinylidene fluoride hollow-fiber UF membrane using bench-scale fouling tests. Dissolved organic carbon content, ultraviolet absorbance and fluorescence excitation-emission matrix spectroscopy were used to assess DOM concentration and composition. Alum and ferric chloride coagulation were the most effective pretreatment processes in reducing membrane fouling, anion exchange was moderately effective, and PAC adsorption and chlorine pre-oxidation were the least effective. Consistent with previous studies, microbially-derived DOM was the major contributor to UF membrane fouling regardless of water source or pretreatment type. Fouling reduction was strongly correlated with the reduction of microbially-derived DOM in foulant layers but not from source waters. This result indicates that a fraction of the total microbially-derived DOM in feed waters was responsible for UF fouling. Overall, pretreatment processes that remove microbially-derived DOM are well-suited for UF membrane fouling reduction.


Subject(s)
Membranes, Artificial , Water Purification , Adsorption , Chlorine , Ultrafiltration
7.
Water Res ; 98: 225-34, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27107140

ABSTRACT

Two challenges to low-pressure membrane (LPM) filtration are limited rejection of dissolved organic matter (DOM) and membrane fouling by DOM. The magnetic ion exchange resin MIEX(®) (Ixom Watercare Inc.) has been demonstrated to remove substantial amounts of DOM from many source waters, suggesting that MIEX can both reduce DOM content in membrane feed waters and minimize LPM fouling. We tested the effect of MIEX pretreatment on the reduction of short-term LPM fouling potential using feed waters varying in DOM concentration and composition. Four natural and two synthetic waters were studied and a polyvinylidene fluoride (PVDF) hollow-fiber ultrafiltration membrane was used in membrane fouling tests. To evaluate whether MIEX removes the fractions of DOM that cause LPM fouling, the DOM in raw, MIEX-treated, and membrane feed and backwash waters was characterized in terms of DOM concentration and composition. Results showed that: (i) the efficacy of MIEX to reduce LPM fouling varies broadly with source water; (ii) MIEX preferentially removes terrestrial DOM over microbial DOM; (iii) microbial DOM is a more important contributor to LPM fouling than terrestrial DOM, relative to their respective concentrations in source waters; and (iv) the fluorescence intensity of microbial DOM in source waters can be used as a quantitative indicator of the ability of MIEX to reduce their membrane fouling potential. Thus, when ion exchange resin processes are used for DOM removal towards membrane fouling reduction, it is advisable to use a resin that has been designed to effectively remove microbial DOM.


Subject(s)
Ion Exchange , Water Pollutants, Chemical , Filtration , Ion Exchange Resins , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...