Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 22(6): 1555-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26524322

ABSTRACT

A closed-circle miniature flow cell for high X-ray photon flux experiments on radiation-sensitive liquid samples is presented. The compact cell is made from highly inert material and the flow is induced by a rotating magnetic stir bar, which acts as a centrifugal pump inside the cell. The cell is ideal for radiation-sensitive yet precious or hazardous liquid samples, such as concentrated acids or bases. As a demonstration of the cell's capabilities, X-ray Raman scattering spectroscopy data on the oxygen K-edge of liquid water under ambient conditions are presented.

2.
J Chem Phys ; 141(24): 244505, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25554165

ABSTRACT

We present a comprehensive simulation study on the solid-liquid phase transition of the ionic liquid 1,3-dimethylimidazolium chloride in terms of the changes in the atomic structure and their effect on the Compton profile. The structures were obtained by using ab initio molecular dynamics simulations. Chosen radial distribution functions of the liquid structure are presented and found generally to be in good agreement with previous ab initio molecular dynamics and neutron scattering studies. The main contributions to the predicted difference Compton profile are found to arise from intermolecular changes in the phase transition. This prediction can be used for interpreting future experiments.

3.
Phys Rev Lett ; 107(19): 197401, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-22181642

ABSTRACT

Water-ethanol mixtures exhibit interesting anomalies in their macroscopic properties. Despite a lot of research, the origin of the anomalies and the microscopic structure itself is still far from completely known. We have utilized the synchrotron x-ray Compton scattering technique to elucidate the structure of aqueous ethanol from a new experimental perspective. The technique is uniquely sensitive to the local molecular geometries at the angstrom and subangstrom scales. The experiments reveal two distinct mixing regimes in terms of geometry: the dilute 5 mol % and the concentrated >15 mol % regimes. By comparing with pure liquids, the former regime is characterized by an intramolecular and the latter by an intermolecular change. The findings bring new light to evaluating the hypothesis of formation of clathratelike structures at the dilute concentrations.


Subject(s)
Ethanol/chemistry , Solutions/chemistry , Water/chemistry , X-Ray Diffraction , Models, Chemical , Molecular Structure , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL