Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 23(1): e53429, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34704340

ABSTRACT

Selective autophagy of damaged organelles is important to maintain cellular homeostasis. The mechanisms how autophagy selects specific targets is often poorly understood. Rabaptin5 was previously known as a major regulator of early endosome identity and maturation. Here, we identify two novel Rabaptin5 interactors: FIP200, a subunit of the ULK1 autophagy initiator complex, and ATG16L1, a central component of the E3-like enzyme in LC3 lipidation. Autophagy of early endosomes damaged by chloroquine or monensin treatment requires Rabaptin5 and particularly a short sequence motif that binds to the WD domain of ATG16L1. Rabaptin5 and its interaction with ATG16L1 further contributes to the autophagic elimination of Salmonella enterica early after infection, when it resides in phagosomes with early endosomal characteristics. Our results demonstrate a novel function of Rabaptin5 in quality control of early endosomes in the selective targeting of autophagy to damaged early endosomes and phagosomes.


Subject(s)
Autophagy-Related Proteins , Endosomes , Vacuoles , Vesicular Transport Proteins , Autophagy , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Endosomes/metabolism , Phagosomes/metabolism , Salmonella , Vacuoles/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
2.
Small GTPases ; 7(1): 34-7, 2016.
Article in English | MEDLINE | ID: mdl-26940354

ABSTRACT

Rab GTPases act as organizers of protein networks defining identities and functions of organelles of the endocytic and secretory pathways. Various modes of coordination between different Rabs drive the timely maturation and conversion of membranes. Endosomal Rab5 has been known as the prime example for self-activation via a feedback loop recruiting Rabaptin5, which is complexed with the Rab5 exchange factor Rabex5, and couples to Rab4-GTP. Among other effectors, Rab5 also recruits the Mon1/SAND1-Ccz1 complex that both activates Rab7 and dissociates Rabex5 for Rab5-to-Rab7 conversion of early-to-late endosomes. A detailed deletion analysis now revealed 2 separate binding sites each for Rab4-GTP and Rab5-GTP and indicates a feedforward mechanism of Rab5 activation. Rabaptin5/Rabex5 is recruited to endosomal membranes positive for Rab4-GTP and ubiquitinated cargo (binding to the ubiquitin binding site of Rabex5). This mechanism also suggests additional criteria for Rab5 inactivation concomitant with increasing Rab7-GTP levels. The disappearance of ubiquitinated cargo upon ESCRT-mediated formation of intraluminal vesicles and inactivation of Rab4 may also contribute to loss of Rab5 activation. Rabaptin5/Rabex5 thus may integrate several cues of maturation to perform Rab conversion. Furthermore Rab5 binding to Rabaptin5 appears to prevent uncontrolled progression to late endosomes.


Subject(s)
Endosomes/metabolism , Vesicular Transport Proteins/metabolism , rab5 GTP-Binding Proteins/metabolism , Endocytosis , Guanine Nucleotide Exchange Factors/metabolism , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
3.
J Cell Sci ; 128(22): 4126-37, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26430212

ABSTRACT

Rab GTPases control membrane identity, fusion and transport by interaction with effector proteins. Effectors that influence the activation-inactivation cycle of their own or other Rab proteins contribute to the timely conversion of Rab membrane identities. Rab5 and its effector rabaptin5 (Rbpt5, also known as RABEP1) are generally considered the prime example for a positive-feedback loop in which Rab5-GTP recruits Rbpt5 in complex with Rabex5 (also known as RABGEF1), the GDP/GTP exchange factor of Rab5, to early endosomes, thus maintaining the Rab5 membrane identity. By deletion analysis, we found that the membrane recruitment of Rabaptin5 required binding to Rab4 and Rabex5, but not Rab5. Deletion of either one of the two Rab5-binding domains or silencing of Rab5 expression did not affect Rabaptin5 recruitment, but produced giant endosomes with early and late endosomal characteristics. The results contradict the model of feedback activation of Rab5 and instead indicate that Rbpt5 is recruited by both Rabex5 recognizing ubiquitylated cargo and by Rab4 to activate Rab5 in a feed-forward manner.


Subject(s)
Endosomes/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Vesicular Transport Proteins/metabolism , rab4 GTP-Binding Proteins/metabolism , Cell Line, Tumor , Endosomes/enzymology , HeLa Cells , Humans , Protein Structure, Tertiary , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...