Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
JCI Insight ; 9(10)2024 May 22.
Article in English | MEDLINE | ID: mdl-38775154

ABSTRACT

MAPK activating death domain (MADD) is a multifunctional protein regulating small GTPases RAB3 and RAB27, MAPK signaling, and cell survival. Polymorphisms in the MADD locus are associated with glycemic traits, but patients with biallelic variants in MADD manifest a complex syndrome affecting nervous, endocrine, exocrine, and hematological systems. We identified a homozygous splice site variant in MADD in 2 siblings with developmental delay, diabetes, congenital hypogonadotropic hypogonadism, and growth hormone deficiency. This variant led to skipping of exon 30 and in-frame deletion of 36 amino acids. To elucidate how this mutation causes pleiotropic endocrine phenotypes, we generated relevant cellular models with deletion of MADD exon 30 (dex30). We observed reduced numbers of ß cells, decreased insulin content, and increased proinsulin-to-insulin ratio in dex30 human embryonic stem cell-derived pancreatic islets. Concordantly, dex30 led to decreased insulin expression in human ß cell line EndoC-ßH1. Furthermore, dex30 resulted in decreased luteinizing hormone expression in mouse pituitary gonadotrope cell line LßT2 but did not affect ontogeny of stem cell-derived GnRH neurons. Protein-protein interactions of wild-type and dex30 MADD revealed changes affecting multiple signaling pathways, while the GDP/GTP exchange activity of dex30 MADD remained intact. Our results suggest MADD-specific processes regulate hormone expression in pancreatic ß cells and pituitary gonadotropes.


Subject(s)
Insulin-Secreting Cells , Insulin-Secreting Cells/metabolism , Humans , Animals , Mice , Male , Gonadotrophs/metabolism , Female , RNA Splice Sites/genetics , Cell Line , Insulin/metabolism , Siblings , Exons/genetics , rab3 GTP-Binding Proteins/metabolism , rab3 GTP-Binding Proteins/genetics , Hypogonadism/genetics , Hypogonadism/metabolism , Hypogonadism/pathology
2.
Transl Vis Sci Technol ; 11(1): 6, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34985506

ABSTRACT

Purpose: Comprehensive genetic testing for inherited retinal dystrophy (IRD) is challenged by difficult-to-sequence genomic regions, which are often mutational hotspots, such as RPGR ORF15. The purpose of this study was to evaluate the diagnostic contribution of RPGR variants in an unselected IRD patient cohort referred for testing in a clinical diagnostic laboratory. Methods: A total of 5201 consecutive patients were analyzed with a clinically validated next-generation sequencing (NGS)-based assay, including the difficult-to-sequence RPGR ORF15 region. Copy number variant (CNV) detection from NGS data was included. Variant interpretation was performed per the American College of Medical Genetics and Genomics guidelines. Results: A confirmed molecular diagnosis in RPGR was found in 4.5% of patients, 24.0% of whom were females. Variants in ORF15 accounted for 74% of the diagnoses; 29% of the diagnostic variants were in the most difficult-to-sequence central region of ORF15 (c.2470-3230). Truncating variants made up the majority (91%) of the diagnostic variants. CNVs explained 2% of the diagnostic cases, of which 80% were one- or two-exon deletions outside of ORF15. Conclusions: Our findings indicate that high-throughput, clinically validated NGS-based testing covering the difficult-to-sequence region of ORF15, in combination with high-resolution CNV detection, can help to maximize the diagnostic yield for patients with IRD. Translational Relevance: These results demonstrate an accurate and scalable method for the detection of RPGR-related variants, including the difficult-to-sequence ORF15 hotspot, which is relevant given current and emerging therapeutic opportunities.


Subject(s)
Eye Proteins , Retinal Dystrophies , Exons , Eye Proteins/genetics , Female , Humans , Pedigree , Prevalence , Retinal Dystrophies/diagnosis , Retinal Dystrophies/epidemiology , Retinal Dystrophies/genetics
3.
Pediatr Res ; 90(2): 431-435, 2021 08.
Article in English | MEDLINE | ID: mdl-33214675

ABSTRACT

BACKGROUND: Paternally inherited loss-of-function mutations in MKRN3 underlie central precocious puberty (CPP). We describe clinical and genetic features of CPP patients with paternally inherited MKRN3 mutations in two independent families. METHODS: The single coding exon of MKRN3 was analyzed in three patients with CPP and their family members, followed by segregation analyses. Additionally, we report the patients' responses to GnRH analog treatment. RESULTS: A paternally inherited novel heterozygous c.939C>G, p.(Ile313Met) missense mutation affecting the RING finger domain of MKRN3 was found in a Finnish girl with CPP (age at presentation 6 years). Two Polish siblings (a girl presenting with B2 at the age of 4 years and a boy with adult size testes at the age of 9 years) had inherited a novel heterozygous MKRN3 mutation c.1237_1252delGGAGACACATGCTTTT p.(Gly413Thrfs*63) from their father. The girls were treated with GnRH analogs, which exhibited suppression of the hypothalamic-pituitary-gonadal axis. In contrast, the male patient was not treated, yet he reached his target height. CONCLUSIONS: We describe two novel MKRN3 mutations in three CPP patients. The first long-term data on a boy with CPP due to an MKRN3 mutation questions the role of GnRH analog treatment in augmenting adult height in males with this condition. IMPACT: We describe the genetic cause for central precocious puberty (CPP) in two families. This report adds two novel MKRN3 mutations to the existing literature. One of the mutations, p.(Ile313Met) affects the RING finger domain of MKRN3, which has been shown to be important for repressing the promoter activity of KISS1 and TAC3. We describe the first long-term observation of a male patient with CPP due to a paternally inherited MKRN3 loss-of-function mutation. Without GnRH analog treatment, he achieved an adult height that was in accordance with his mid-parental target height.


Subject(s)
Mutation , Puberty, Precocious/genetics , Ubiquitin-Protein Ligases/genetics , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Gonadotropin-Releasing Hormone/analogs & derivatives , Gonadotropin-Releasing Hormone/therapeutic use , Heterozygote , Humans , Male , Paternal Inheritance , Pedigree , Phenotype , Puberty, Precocious/diagnosis , Puberty, Precocious/drug therapy , Treatment Outcome
4.
J Clin Endocrinol Metab ; 105(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32060556

ABSTRACT

CONTEXT: Congenital pituitary hormone deficiencies with syndromic phenotypes and/or familial occurrence suggest genetic hypopituitarism; however, in many such patients the underlying molecular basis of the disease remains unknown. OBJECTIVE: To describe patients with syndromic hypopituitarism due to biallelic loss-of-function variants in TBC1D32, a gene implicated in Sonic Hedgehog (Shh) signaling. SETTING: Referral center. PATIENTS: A Finnish family of 2 siblings with panhypopituitarism, absent anterior pituitary, and mild craniofacial dysmorphism, and a Pakistani family with a proband with growth hormone deficiency, anterior pituitary hypoplasia, and developmental delay. INTERVENTIONS: The patients were investigated by whole genome sequencing. Expression profiling of TBC1D32 in human fetal brain was performed through in situ hybridization. Stable and dynamic protein-protein interaction partners of TBC1D32 were investigated in HEK cells followed by mass spectrometry analyses. MAIN OUTCOME MEASURES: Genetic and phenotypic features of patients with biallelic loss-of-function mutations in TBC1D32. RESULTS: The Finnish patients harboured compound heterozygous loss-of-function variants (c.1165_1166dup p.(Gln390Phefs*32) and c.2151del p.(Lys717Asnfs*29)) in TBC1D32; the Pakistani proband carried a known pathogenic homozygous TBC1D32 splice-site variant c.1372 + 1G > A p.(Arg411_Gly458del), as did a fetus with a cleft lip and partial intestinal malrotation from a terminated pregnancy within the same pedigree. TBC1D32 was expressed in the developing hypothalamus, Rathke's pouch, and areas of the hindbrain. TBC1D32 interacted with proteins implicated in cilium assembly, Shh signaling, and brain development. CONCLUSIONS: Biallelic TBC1D32 variants underlie syndromic hypopituitarism, and the underlying mechanism may be via disrupted Shh signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Biomarkers/analysis , Hypopituitarism/etiology , Mutation , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Hypopituitarism/pathology , Infant , Infant, Newborn , Male , Pedigree , Phenotype , Prognosis , Signal Transduction
5.
Am J Hum Genet ; 106(1): 58-70, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31883645

ABSTRACT

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by infertility and the absence of puberty. Defects in GnRH neuron migration or altered GnRH secretion and/or action lead to a severe gonadotropin-releasing hormone (GnRH) deficiency. Given the close developmental association of GnRH neurons with the olfactory primary axons, CHH is often associated with anosmia or hyposmia, in which case it is defined as Kallmann syndrome (KS). The genetics of CHH are heterogeneous, and >40 genes are involved either alone or in combination. Several CHH-related genes controlling GnRH ontogeny encode proteins containing fibronectin-3 (FN3) domains, which are important for brain and neural development. Therefore, we hypothesized that defects in other FN3-superfamily genes would underlie CHH. Next-generation sequencing was performed for 240 CHH unrelated probands and filtered for rare, protein-truncating variants (PTVs) in FN3-superfamily genes. Compared to gnomAD controls the CHH cohort was statistically enriched for PTVs in neuron-derived neurotrophic factor (NDNF) (p = 1.40 × 10-6). Three heterozygous PTVs (p.Lys62∗, p.Tyr128Thrfs∗55, and p.Trp469∗, all absent from the gnomAD database) and an additional heterozygous missense mutation (p.Thr201Ser) were found in four KS probands. Notably, NDNF is expressed along the GnRH neuron migratory route in both mouse embryos and human fetuses and enhances GnRH neuron migration. Further, knock down of the zebrafish ortholog of NDNF resulted in altered GnRH migration. Finally, mice lacking Ndnf showed delayed GnRH neuron migration and altered olfactory axonal projections to the olfactory bulb; both results are consistent with a role of NDNF in GnRH neuron development. Altogether, our results highlight NDNF as a gene involved in the GnRH neuron migration implicated in KS.


Subject(s)
Cell Movement , Hypogonadism/congenital , Hypogonadism/genetics , Mutation , Nerve Growth Factors/genetics , Neurons/pathology , Adolescent , Animals , Cohort Studies , Female , Heterozygote , Humans , Hypogonadism/pathology , Male , Mice , Mice, Knockout , Nerve Growth Factors/physiology , Neurons/metabolism , Pedigree , Zebrafish
6.
Endocr Connect ; 8(5): 506-509, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30999277

ABSTRACT

In approximately half of congenital hypogonadotropic hypogonadism (cHH) patients, the genetic cause remains unidentified. Since the lack of certain miRNAs in animal models has led to cHH, we sequenced human miRNAs predicted to regulate cHH-related genes (MIR7-3, MIR141, MIR429 and MIR200A-C) in 24 cHH patients with Sanger sequencing. A heterozygous variant in MIR200A (rs202051309; general population frequency of 0.02) was found in one patient. Our results suggest that mutations in the studied miRNAs are unlikely causes of cHH. However, the complex interplay between miRNAs and their target genes in these diseases requires further investigations.

7.
Article in English | MEDLINE | ID: mdl-30800097

ABSTRACT

Paternally-inherited loss-of-function mutations in makorin ring finger protein 3 gene (MKRN3) underlie central precocious puberty. To investigate the puberty-related mechanism(s) of MKRN3 in humans, we generated two distinct bi-allelic MKRN3 knock-out human pluripotent stem cell lines, Del 1 and Del 2, and differentiated them into GNRH1-expressing neurons. Both Del 1 and Del 2 clones could be differentiated into neuronal progenitors and GNRH1-expressing neurons, however, the relative expression of GNRH1 did not differ from wild type cells (P = NS). Subsequently, we investigated stable and dynamic protein-protein interaction (PPI) partners of MKRN3 by stably expressing it in HEK cells followed by mass spectrometry analyses. We found 81 high-confidence novel protein interaction partners, which are implicated in cellular processes such as insulin signaling, RNA metabolism and cell-cell adhesion. Of the identified interactors, 20 have been previously implicated in puberty timing. In conclusion, our stem cell model for generation of GNRH1-expressing neurons did not offer mechanistic insight for the role of MKRN3 in puberty initiation. The PPI data, however, indicate that MKRN3 may regulate puberty by interacting with other puberty-related proteins. Further studies are required to elucidate the possible mechanisms and outcomes of these interactions.

8.
Article in English | MEDLINE | ID: mdl-29740400

ABSTRACT

OBJECTIVE: Two missense mutations in KCNQ1, an imprinted gene that encodes the alpha subunit of the voltage-gated potassium channel Kv7.1, cause autosomal dominant growth hormone deficiency and maternally inherited gingival fibromatosis. We evaluated endocrine features, birth size, and subsequent somatic growth of patients with long QT syndrome 1 (LQT1) due to loss-of-function mutations in KCNQ1. DESIGN: Medical records of 104 patients with LQT1 in a single tertiary care center between 1995 and 2015 were retrospectively reviewed. METHODS: Clinical and endocrine data of the LQT1 patients were included in the analyses. RESULTS: At birth, patients with a maternally inherited mutation (n = 52) were shorter than those with paternal inheritance of the mutation (n = 29) (birth length, -0.70 ± 1.1 SDS vs. -0.2 ± 1.0 SDS, P < 0.05). Further analyses showed, however, that only newborns (n = 19) of mothers who had received beta blockers during pregnancy were shorter and lighter at birth than those with paternal inheritance of the mutation (n = 29) (-0.89 ± 1.0 SDS vs. -0.20 ± 1.0 SDS, P < 0.05; and 3,173 ± 469 vs. 3,515 ± 466 g, P < 0.05). Maternal beta blocker treatment during the pregnancy was also associated with lower cord blood TSH levels (P = 0.011) and significant catch-up growth during the first year of life (Δ0.08 SDS/month, P = 0.004). Later, childhood growth of the patients was unremarkable. CONCLUSION: Loss-of-function mutations in KCNQ1 are not associated with abnormalities in growth, whereas maternal beta blocker use during pregnancy seems to modify prenatal growth of LQT1 patients-a phenomenon followed by catch-up growth after birth.

9.
Endocr Connect ; 7(5): 645-652, 2018 May.
Article in English | MEDLINE | ID: mdl-29703730

ABSTRACT

OBJECTIVE: Recently, mutations in KCNQ1, a potassium channel gene usually linked to long QT syndrome, were reported to cause maternally inherited gingival fibromatosis and growth hormone deficiency (GHD). Expression of the mutated KCNQ1 with the auxiliary potassium channel subunit KCNE2 was shown to reduce pituitary hormone secretion in functional experiments. Here, we investigated if germline mutations in KCNQ1 and KCNE2 were present in patients with somatotropinomas, which represent a model of growth hormone excess. DESIGN AND METHODS: KCNQ1 and KCNE2 were screened for germline mutations in 53 patients with acromegaly by Sanger sequencing. Effects of the variants were predicted by in silico tools. RESULTS: Only deep intronic and synonymous polymorphisms were detected in KCNQ1. These findings were likely insignificant based on in silico predictions and the variants' frequencies in the general population. In KCNE2, a heterozygous c.22A>G, p.(Thr8Ala) mutation with unknown significance was found in three patients. It was present in the database controls with a frequency of 0.0038. CONCLUSIONS: KCNQ1 or KCNE2 mutations do not appear to account for somatotropinoma formation, although larger patient series are needed to validate the findings.

10.
EMBO Rep ; 19(2): 269-289, 2018 02.
Article in English | MEDLINE | ID: mdl-29263200

ABSTRACT

WDR11 has been implicated in congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS), human developmental genetic disorders defined by delayed puberty and infertility. However, WDR11's role in development is poorly understood. Here, we report that WDR11 modulates the Hedgehog (Hh) signalling pathway and is essential for ciliogenesis. Disruption of WDR11 expression in mouse and zebrafish results in phenotypic characteristics associated with defective Hh signalling, accompanied by dysgenesis of ciliated tissues. Wdr11-null mice also exhibit early-onset obesity. We find that WDR11 shuttles from the cilium to the nucleus in response to Hh signalling. WDR11 regulates the proteolytic processing of GLI3 and cooperates with the transcription factor EMX1 in the induction of downstream Hh pathway gene expression and gonadotrophin-releasing hormone production. The CHH/KS-associated human mutations result in loss of function of WDR11. Treatment with the Hh agonist purmorphamine partially rescues the WDR11 haploinsufficiency phenotypes. Our study reveals a novel class of ciliopathy caused by WDR11 mutations and suggests that CHH/KS may be a part of the human ciliopathy spectrum.


Subject(s)
Ciliopathies/genetics , Ciliopathies/metabolism , Hedgehog Proteins/metabolism , Kallmann Syndrome/genetics , Kallmann Syndrome/metabolism , Membrane Proteins/metabolism , Signal Transduction , Animals , Biopsy , Gene Expression , Gene Expression Profiling , Gene Knockout Techniques , Genetic Association Studies , Genotype , Humans , Kallmann Syndrome/diagnosis , Magnetic Resonance Imaging , Membrane Proteins/genetics , Mice , Mice, Knockout , Mutation , Organ Specificity/genetics , Patched-1 Receptor/genetics , Phenotype , Promoter Regions, Genetic , Protein Binding , Protein Transport , Transcriptome , Zebrafish
11.
PLoS One ; 12(11): e0188750, 2017.
Article in English | MEDLINE | ID: mdl-29182666

ABSTRACT

Biallelic, partial loss-of-function mutations in GNRHR cause a wide spectrum of reproductive phenotypes from constitutional delay of growth and puberty to complete congenital hypogonadotropic hypogonadism. We studied the frequency of GNRHR, FGFR1, TAC3, and TACR3 mutations in nine adolescent and young adult females with clinical cues consistent with partial gonadotropin deficiency (stalled puberty, unexplained secondary amenorrhea), and describe phenotypic features and molecular genetic findings of monozygotic twin brothers with stalled puberty. Two girls out of nine (22%, 95%CI 6-55%) carried biallelic mutations in GNRHR. The girl with compound heterozygous c.317A>G p.(Gln106Arg) and c.924_926delCTT p.(Phe309del) GNRHR mutations displayed incomplete puberty and clinical signs of hypoestrogenism. The patient carrying a homozygous c.785G>A p.(Arg262Gln) mutation presented with signs of hypoestrogenism and unexplained secondary amenorrhea. None of the patients exhibited mutations in FGFR1, TAC3, or TACR3. The twin brothers, compound heterozygous for GNRHR mutations c.317A>G p.(Gln106Arg) and c.785G>A p.(Arg262Gln), presented with stalled puberty and were discordant for weight, and the heavier of them had lower testosterone levels. These results suggest that genetic testing of the GNRHR gene should be offered to adolescent females with low-normal gonadotropins and unexplained stalled puberty or menstrual dysfunction. In male patients with partial gonadotropin deficiency, excess adipose tissue may suppress hypothalamic-pituitary-gonadal axis.


Subject(s)
Gonadotropins/deficiency , Mutation , Receptors, LHRH/genetics , Adolescent , Adult , Female , Humans , Male , Young Adult
12.
Nat Commun ; 8(1): 1289, 2017 11 03.
Article in English | MEDLINE | ID: mdl-29097701

ABSTRACT

Familial growth hormone deficiency provides an opportunity to identify new genetic causes of short stature. Here we combine linkage analysis with whole-genome resequencing in patients with growth hormone deficiency and maternally inherited gingival fibromatosis. We report that patients from three unrelated families harbor either of two missense mutations, c.347G>T p.(Arg116Leu) or c.1106C>T p.(Pro369Leu), in KCNQ1, a gene previously implicated in the long QT interval syndrome. Kcnq1 is expressed in hypothalamic GHRH neurons and pituitary somatotropes. Co-expressing KCNQ1 with the KCNE2 ß-subunit shows that both KCNQ1 mutants increase current levels in patch clamp analyses and are associated with reduced pituitary hormone secretion from AtT-20 cells. In conclusion, our results reveal a role for the KCNQ1 potassium channel in the regulation of human growth, and show that growth hormone deficiency associated with maternally inherited gingival fibromatosis is an allelic disorder with cardiac arrhythmia syndromes caused by KCNQ1 mutations.


Subject(s)
Fibromatosis, Gingival/genetics , Human Growth Hormone/deficiency , KCNQ1 Potassium Channel/genetics , Mutation, Missense , Adolescent , Adrenocorticotropic Hormone/metabolism , Adult , Alleles , Amino Acid Substitution , Animals , Arrhythmias, Cardiac/genetics , Child , Child, Preschool , Female , Fibromatosis, Gingival/metabolism , Humans , KCNQ1 Potassium Channel/chemistry , KCNQ1 Potassium Channel/metabolism , Male , Maternal Inheritance/genetics , Mice , Middle Aged , Models, Molecular , Pedigree , Protein Interaction Maps , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Young Adult
13.
Hum Reprod ; 32(1): 147-153, 2017 01.
Article in English | MEDLINE | ID: mdl-27927844

ABSTRACT

STUDY QUESTION: What diagnoses underlie delayed puberty (DP) and predict its outcome? SUMMARY ANSWER: A multitude of different diagnoses underlie DP, and in boys a history of cryptorchidism, small testicular size and slow growth velocity (GV) predict its clinical course. WHAT IS KNOWN ALREADY: DP is caused by a variety of underlying etiologies. Hormonal markers can be used in the differential diagnosis of DP but none of them have shown complete diagnostic accuracy. STUDY DESIGN, SIZE, DURATION: Medical records of 589 patients evaluated for DP in a single tertiary care center between 2004 and 2014 were retrospectively reviewed. PARTICIPANTS/MATERIALS, SETTING, METHODS: Clinical and biochemical data of 174 boys and 70 girls who fulfilled the criteria of DP were included in the analyses. We characterized the frequencies of underlying conditions and evaluated the predictive efficacy of selected clinical and hormonal markers. MAIN RESULTS AND THE ROLE OF CHANCE: Thirty etiologies that underlie DP were identified. No markers of clinical value could be identified in the girls, whereas a history of cryptorchidism in the boys was associated with an increase in the risk of permanent hypogonadism (odds ratio 17.2 (95% CI; 3.4-85.4, P < 0.001)). The conditions that cause functional hypogonadotropic hypogonadism were more frequent in boys with a GV below 3 cm/yr than in those growing faster (19% vs 4%, P < 0.05). In this series, the most effective markers to discriminate the prepubertal boys with constitutional delay of growth and puberty (CDGP) from those with congenital hypogonadotropic hypogonadism (CHH) were testicular volume (cut-off 1.1 ml with a sensitivity of 100% and a specificity of 91%), GnRH-induced maximal LH (cut-off 4.3 IU/L; 100%, 75%) and basal inhibin B (INHB) level (cut-off 61 ng/L; 90%, 83%). LIMITATIONS, REASONS FOR CAUTION: The main limitation of the study is the retrospective design. WIDER IMPLICATIONS OF THE FINDINGS: Prior cryptorchidism and slow GV are two important clinical cues that may help clinicians to predict the clinical course of DP in boys, whereas markers of similar value could not be identified in girls. In prepubertal boys, testicular size appeared as effective as INHB and GnRH-induced LH levels in the differential diagnosis between CHH and CDGP. STUDY FUNDING/COMPETING INTERESTS: This study was supported by the Academy of Finland (268356), Foundation for Pediatric Research (7495), Sigrid Juselius Foundation (2613) and the Finnish Medical Foundation (011115). The authors have no competing interests to report. TRIAL REGISTRATION NUMBER: Not applicable.


Subject(s)
Growth Disorders/etiology , Hypogonadism/complications , Puberty, Delayed/etiology , Adolescent , Child , Female , Follicle Stimulating Hormone/blood , Growth Disorders/blood , Growth Disorders/pathology , Human Growth Hormone/blood , Humans , Hypogonadism/blood , Hypogonadism/pathology , Inhibins/blood , Luteinizing Hormone/blood , Male , Organ Size , Puberty, Delayed/blood , Puberty, Delayed/pathology , Retrospective Studies , Testis/pathology
14.
Sci Rep ; 6: 32819, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27609317

ABSTRACT

Mutations in the X-linked androgen receptor (AR) gene underlie complete androgen insensitivity syndrome (CAIS), the most common cause of 46,XY sex reversal. Molecular genetic diagnosis of CAIS, however, remains uncertain in patients who show normal coding region of AR. Here, we describe a novel mechanism of AR disruption leading to CAIS in two 46,XY sisters. We analyzed whole-genome sequencing data of the patients for pathogenic variants outside the AR coding region. Patient fibroblasts from the genital area were used for AR cDNA analysis and protein quantification. Analysis of the cDNA revealed aberrant splicing of the mRNA caused by a deep intronic mutation (c.2450-118A>G) in the intron 6 of AR. The mutation creates a de novo 5' splice site and a putative exonic splicing enhancer motif, which leads to the preferential formation of two aberrantly spliced mRNAs (predicted to include a premature stop codon). Patient fibroblasts contained no detectable AR protein. Our results show that patients with CAIS and normal AR coding region need to be examined for deep intronic mutations that can lead to pseudoexon activation.


Subject(s)
Androgen-Insensitivity Syndrome/genetics , Point Mutation , Receptors, Androgen/genetics , Alternative Splicing , Androgen-Insensitivity Syndrome/metabolism , Exons , Female , Genetic Predisposition to Disease , Humans , Introns , Male , Receptors, Androgen/metabolism , Siblings , Exome Sequencing/methods
16.
Pediatr Res ; 79(5): 705-9, 2016 05.
Article in English | MEDLINE | ID: mdl-26720605

ABSTRACT

BACKGROUND: We describe childhood growth patterns in a series of well-characterized patients with congenital hypogonadotropic hypogonadism (CHH) with special emphasis on genotype-phenotype correlation. METHODS: We retrospectively evaluated the growth charts of 36 males with CHH (27 from Finland and 9 from Denmark). Fifteen patients (42%) had representative growth measurements during the first year of life. Genetically verified diagnosis of CHH was made in 15 (42%) patients (KAL1, FGFR1, GNRHR, or PROK2). RESULTS: We found a deceleration of growth rate during early childhood. The mean (SD) length standard deviation score (SDS) at birth (0.2 (1.6) SDS) decreased significantly during the first 3 (to -0.9 (1.2) SDS) and 6 mo of life (to -0.7 (1.3) SDS). At the average age of 3 y, mean height SDS (-0.2 (1.3) SDS) did not differ from mid-parental target height (MPH). Mean height SDS reached its nadir (-1.7 (1.4) SDS) at an average age of 15.8 (0.8) years reflecting pubertal failure. Final heights did not differ from MPH. No clear genotype-growth associations emerged. CONCLUSION: Moderate postnatal length deflection is a novel feature of CHH and may reflect early androgen deficiency. Childhood growth patterns are not of clinical value in targeting molecular genetic diagnosis of CHH.


Subject(s)
Hypogonadism/physiopathology , Adolescent , Adolescent Development , Androgens/deficiency , Child , Child Development , Child, Preschool , Denmark , Extracellular Matrix Proteins/genetics , Finland , Gastrointestinal Hormones/genetics , Genetic Association Studies , Humans , Infant , Infant, Newborn , Male , Nerve Tissue Proteins/genetics , Neuropeptides/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptors, LHRH/genetics , Retrospective Studies
19.
Pediatr Res ; 78(6): 709-11, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26331766

ABSTRACT

BACKGROUND: Idiopathic central precocious puberty (ICPP) results from the premature reactivation of the hypothalamic-pituitary-gonadal axis leading to development of secondary sexual characteristics prior to 8 y in girls or 9 y in boys. Since the initial discovery of mutations in the maternally imprinted MKRN3 gene in 2013, several case reports have described mutations in this gene in ICPP patients from different populations, highlighting the importance of MKRN3 as a regulator of pubertal onset. METHODS: We screened 29 Danish girls with ICPP for mutations in MKRN3. Expression of MKRN3 in human hypothalamic complementary DNA (cDNA) was investigated by PCR. RESULTS: One paternally inherited rare variant, c.1034G>A (p.Arg345His), was identified in one girl with ICPP and in her brother with early puberty. The variant is predicted to be deleterious by three different in silico prediction programs. Expression of MKRN3 was confirmed in adult human hypothalamus. CONCLUSION: Our results are in line with previous studies in which paternally inherited MKRN3 mutations have been found both in males and in females with ICPP or early puberty. Our report further expands the set of MKRN3 mutations identified in ICPP patients across diverse populations, thus supporting the major regulatory function of MKRN3 in pubertal onset.


Subject(s)
Fathers , Mutation, Missense , Puberty, Precocious/genetics , Puberty/genetics , Ribonucleoproteins/genetics , Siblings , Age Factors , Child , Computer Simulation , DNA Mutational Analysis , Denmark , Female , Genetic Predisposition to Disease , Gonadotropin-Releasing Hormone/analogs & derivatives , Gonadotropin-Releasing Hormone/therapeutic use , Heredity , Humans , Male , Models, Genetic , Pedigree , Phenotype , Puberty/drug effects , Puberty, Precocious/diagnosis , Puberty, Precocious/drug therapy , Puberty, Precocious/physiopathology , Risk Factors , Treatment Outcome , Ubiquitin-Protein Ligases
SELECTION OF CITATIONS
SEARCH DETAIL
...