Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Elife ; 122023 08 08.
Article in English | MEDLINE | ID: mdl-37552050

ABSTRACT

Loss-of-function genetic tools are widely applied for validating therapeutic targets, but their utility remains limited by incomplete on- and uncontrolled off-target effects. We describe artificial RNA interference (ARTi) based on synthetic, ultra-potent, off-target-free shRNAs that enable efficient and inducible suppression of any gene upon introduction of a synthetic target sequence into non-coding transcript regions. ARTi establishes a scalable loss-of-function tool with full control over on- and off-target effects.


Subject(s)
RNA Interference , RNA, Small Interfering/genetics
2.
Nat Cancer ; 3(7): 821-836, 2022 07.
Article in English | MEDLINE | ID: mdl-35883003

ABSTRACT

Oncogenic alterations in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of patients with non-small cell lung cancer and predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinical-grade tyrosine kinase inhibitors are limited by either insufficient selectivity against wild-type (WT) epidermal growth factor receptor (EGFR), which is a major cause of dose-limiting toxicity or by potency against HER2 exon 20 mutant variants. Here we report the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing WT EGFR, which reduce tumor cell survival and proliferation in vitro and result in regressions in preclinical xenograft models of HER2 exon 20 mutant non-small cell lung cancer, concomitant with inhibition of downstream HER2 signaling. Our results suggest that HER2 exon 20 insertion-driven tumors can be effectively treated by a potent and highly selective HER2 inhibitor while sparing WT EGFR, paving the way for clinical translation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/genetics , Exons/genetics , Genes, erbB-2 , Humans , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/genetics
3.
Cell Rep ; 39(2): 110636, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35417719

ABSTRACT

Genetic networks are characterized by extensive buffering. During tumor evolution, disruption of functional redundancies can create de novo vulnerabilities that are specific to cancer cells. Here, we systematically search for cancer-relevant paralog interactions using CRISPR screens and publicly available loss-of-function datasets. Our analysis reveals >2,000 candidate dependencies, several of which we validate experimentally, including CSTF2-CSTF2T, DNAJC15-DNAJC19, FAM50A-FAM50B, and RPP25-RPP25L. We provide evidence that RPP25L can physically and functionally compensate for the absence of RPP25 as a member of the RNase P/MRP complexes in tRNA processing. Our analysis also reveals unexpected redundancies between sex chromosome genes. We show that chrX- and chrY-encoded paralogs, such as ZFX-ZFY, DDX3X-DDX3Y, and EIF1AX-EIF1AY, are functionally linked. Tumor cell lines from male patients with loss of chromosome Y become dependent on the chrX-encoded gene. We propose targeting of chrX-encoded paralogs as a general therapeutic strategy for human tumors that have lost the Y chromosome.


Subject(s)
Neoplasms , Oncogenes , DEAD-box RNA Helicases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Male , Minor Histocompatibility Antigens/metabolism , Neoplasms/genetics , RNA-Binding Proteins/genetics , Sex Chromosomes/metabolism , X Chromosome , Y Chromosome
4.
Physiol Rev ; 101(1): 177-211, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32525760

ABSTRACT

Given the large amount of genome-wide data that have been collected during the last decades, a good understanding of how and why cells change during development, homeostasis, and disease might be expected. Unfortunately, the opposite is true; triggers that cause cellular state changes remain elusive, and the underlying molecular mechanisms are poorly understood. Although genes with the potential to influence cell states are known, the historic dependency on methods that manipulate gene expression outside the endogenous chromatin context has prevented us from understanding how cells organize, interpret, and protect cellular programs. Fortunately, recent methodological innovations are now providing options to answer these outstanding questions, by allowing to target and manipulate individual genomic and epigenomic loci. In particular, three experimental approaches are now feasible due to DNA targeting tools, namely, activation and/or repression of master transcription factors in their endogenous chromatin context; targeting transcription factors to endogenous, alternative, or inaccessible sites; and finally, functional manipulation of the chromatin context. In this article, we discuss the molecular basis of DNA targeting tools and review the potential of these new technologies before we summarize how these have already been used for the manipulation of cellular states and hypothesize about future applications.


Subject(s)
CRISPR-Cas Systems , Cell Physiological Phenomena/physiology , Epigenesis, Genetic , Gene Editing , Genetic Engineering/methods , Physiology/methods , Animals , Epigenomics , Humans , Transcription, Genetic
5.
Nat Commun ; 10(1): 2119, 2019 05 09.
Article in English | MEDLINE | ID: mdl-31073172

ABSTRACT

Master transcription factors have the ability to direct and reverse cellular identities, and consequently their genes must be subject to particular transcriptional control. However, it is unclear which molecular processes are responsible for impeding their activation and safeguarding cellular identities. Here we show that the targeting of dCas9-VP64 to the promoter of the master transcription factor Sox1 results in strong transcript and protein up-regulation in neural progenitor cells (NPCs). This gene activation restores lost neuronal differentiation potential, which substantiates the role of Sox1 as a master transcription factor. However, despite efficient transactivator binding, major proportions of progenitor cells are unresponsive to the transactivating stimulus. By combining the transactivation domain with epigenome editing we find that among a series of euchromatic processes, the removal of DNA methylation (by dCas9-Tet1) has the highest potential to increase the proportion of cells activating foreign master transcription factors and thus breaking down cell identity barriers.


Subject(s)
Cell Differentiation/genetics , Cellular Reprogramming/genetics , Epigenesis, Genetic , Neural Stem Cells/physiology , SOXB1 Transcription Factors/metabolism , Animals , CRISPR-Cas Systems/genetics , Cell Line , DNA Methylation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Editing/methods , Gene Expression Regulation , Mice , Neuroglia/cytology , Neuroglia/physiology , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , SOXB1 Transcription Factors/genetics , Transcription, Genetic/genetics
6.
Nat Microbiol ; 4(3): 480-491, 2019 03.
Article in English | MEDLINE | ID: mdl-30718845

ABSTRACT

Phenotypic cell-to-cell variability is a fundamental determinant of microbial fitness that contributes to stress adaptation and drug resistance. Gene expression heterogeneity underpins this variability but is challenging to study genome-wide. Here we examine the transcriptomes of >2,000 single fission yeast cells exposed to various environmental conditions by combining imaging, single-cell RNA sequencing and Bayesian true count recovery. We identify sets of highly variable genes during rapid proliferation in constant culture conditions. By integrating single-cell RNA sequencing and cell-size data, we provide insights into genes that are regulated during cell growth and division, including genes whose expression does not scale with cell size. We further analyse the heterogeneity of gene expression during adaptive and acute responses to changing environments. Entry into the stationary phase is preceded by a gradual, synchronized adaptation in gene regulation that is followed by highly variable gene expression when growth decreases. Conversely, sudden and acute heat shock leads to a stronger, coordinated response and adaptation across cells. This analysis reveals that the magnitude of global gene expression heterogeneity is regulated in response to different physiological conditions within populations of a unicellular eukaryote.


Subject(s)
Gene Expression Regulation, Fungal , Genome, Fungal , Schizosaccharomyces/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Acclimatization/genetics , Bayes Theorem , Cell Cycle/genetics , Gene Expression Profiling , Heat-Shock Response , Schizosaccharomyces/physiology
7.
PLoS One ; 13(4): e0196015, 2018.
Article in English | MEDLINE | ID: mdl-29702666

ABSTRACT

Novel applications based on the bacterial CRISPR system make genetic, genomic, transcriptional and epigenomic engineering widely accessible for the first time. A significant advantage of CRISPR over previous methods is its tremendous adaptability due to its bipartite nature. Cas9 or its engineered variants define the molecular effect, while short gRNAs determine the targeting sites. A majority of CRISPR approaches depend on the simultaneous delivery of multiple gRNAs into single cells, either as an essential precondition, to increase responsive cell populations or to enhance phenotypic outcomes. Despite these requirements, methods allowing the efficient generation and delivery of multiple gRNA expression units into single cells are still sparse. Here we present STAgR (String assembly gRNA cloning), a single step gRNA multiplexing system, that obtains its advantages by employing the N20 targeting sequences as necessary homologies for Gibson assembly. We show that STAgR allows reliable and cost-effective generation of vectors with high numbers of gRNAs enabling multiplexed CRISPR approaches. Moreover, STAgR is easily customizable, as vector backbones as well as gRNA structures, numbers and promoters can be freely chosen and combined. Finally, we demonstrate STAgR's widespread functionality, its efficiency in multi-targeting approaches, using it for both, genome and transcriptome editing, as well as applying it in vitro and in vivo.


Subject(s)
Genetic Engineering/methods , RNA, Guide, Kinetoplastida/genetics , CRISPR-Cas Systems , Gene Editing , HeLa Cells , Humans , Promoter Regions, Genetic
8.
J Vis Exp ; (130)2017 12 06.
Article in English | MEDLINE | ID: mdl-29286403

ABSTRACT

The popularity of the CRISPR/Cas9 system for both genome and epigenome engineering stems from its simplicity and adaptability. An effector (the Cas9 nuclease or a nuclease-dead dCas9 fusion protein) is targeted to a specific site in the genome by a small synthetic RNA known as the guide RNA, or gRNA. The bipartite nature of the CRISPR system enables its use in screening approaches since plasmid libraries containing expression cassettes of thousands of individual gRNAs can be used to interrogate many different sites in a single experiment. To date, gRNA sequences for the construction of libraries have been almost exclusively generated by oligonucleotide synthesis, which limits the achievable complexity of sequences in the library and is relatively cost-intensive. Here, a detailed protocol for CORALINA (comprehensive gRNA library generation through controlled nuclease activity), a simple and cost-effective method for the generation of highly complex gRNA libraries based on enzymatic digestion of input DNA, is described. Since CORALINA libraries can be generated from any source of DNA, plenty of options for customization exist, enabling a large variety of CRISPR-based screens.


Subject(s)
DNA/genetics , Gene Library , RNA, Guide, Kinetoplastida/genetics , Animals , Humans , Mice
9.
Nat Rev Genet ; 18(1): 51-66, 2017 01.
Article in English | MEDLINE | ID: mdl-27867193

ABSTRACT

Myriads of epigenomic features have been comprehensively profiled in health and disease across cell types, tissues and individuals. Although current epigenomic approaches can infer function for chromatin marks through correlation, it remains challenging to establish which marks actually have causative roles in gene regulation and other processes. After revisiting how classical approaches have addressed this question in the past, we discuss the current state of epigenomic profiling and how functional information can be indirectly inferred. We also present new approaches that promise definitive functional answers, which are collectively referred to as 'epigenome editing'. In particular, we explore CRISPR-based technologies for single-locus and multi-locus manipulation. Finally, we discuss which level of function can be achieved with each approach and introduce emerging strategies for high-throughput progression from profiles to function.


Subject(s)
Chromatin/genetics , Epigenesis, Genetic/genetics , Epigenomics/methods , Gene Expression Regulation , Animals , CRISPR-Cas Systems , Gene Expression Profiling , Genetic Engineering , Humans , Phenotype
10.
BMC Genomics ; 17(1): 917, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27842490

ABSTRACT

BACKGROUND: The bacterial CRISPR system is fast becoming the most popular genetic and epigenetic engineering tool due to its universal applicability and adaptability. The desire to deploy CRISPR-based methods in a large variety of species and contexts has created an urgent need for the development of easy, time- and cost-effective methods enabling large-scale screening approaches. RESULTS: Here we describe CORALINA (comprehensive gRNA library generation through controlled nuclease activity), a method for the generation of comprehensive gRNA libraries for CRISPR-based screens. CORALINA gRNA libraries can be derived from any source of DNA without the need of complex oligonucleotide synthesis. We show the utility of CORALINA for human and mouse genomic DNA, its reproducibility in covering the most relevant genomic features including regulatory, coding and non-coding sequences and confirm the functionality of CORALINA generated gRNAs. CONCLUSIONS: The simplicity and cost-effectiveness make CORALINA suitable for any experimental system. The unprecedented sequence complexities obtainable with CORALINA libraries are a necessary pre-requisite for less biased large scale genomic and epigenomic screens.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Library , Genetic Engineering , Genomics , RNA, Guide, Kinetoplastida , Animals , Genetic Engineering/methods , Genomics/methods , Humans , Mice , Reproducibility of Results
11.
Genome Med ; 7(1): 75, 2015.
Article in English | MEDLINE | ID: mdl-26246858

ABSTRACT

[This corrects the article DOI: 10.1186/s13073-015-0185-8.].

12.
Epigenetics ; 8(9): 953-61, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23867721

ABSTRACT

One in six cancers worldwide is caused by infection and human papillomavirus (HPV) is one of the main culprits. To better understand the dynamics of HPV integration and its effect on both the viral and host methylomes, we conducted whole-genome DNA methylation analysis using MeDIP-seq of HPV+ and HPV- head and neck squamous cell carcinoma (HNSCC). We determined the viral subtype to be HPV-16 in all cases and show that HPV-16 integrates into the host genome at multiple random sites and that this process predominantly involves the transcriptional repressor gene (E2) in the viral genome. Comparative analysis identified 453 (FDR ≤ 0.01) differentially methylated regions (DMRs) in the HPV+ host methylome. Bioinformatics characterization of these DMRs confirmed the previously reported cadherin genes to be affected but also revealed new targets for HPV-mediated methylation changes at regions not covered by array-based platforms, including the recently identified super-enhancers.


Subject(s)
Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/virology , DNA Methylation , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/virology , Human papillomavirus 16/genetics , Virus Integration/genetics , Cadherins/genetics , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , DNA-Binding Proteins/physiology , Epigenesis, Genetic , Genome, Human , Genome, Viral , Head and Neck Neoplasms/metabolism , Human papillomavirus 16/physiology , Humans , Oligonucleotide Array Sequence Analysis , Oncogene Proteins, Viral/physiology , Squamous Cell Carcinoma of Head and Neck , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL