Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Tuberculosis (Edinb) ; 143S: 102396, 2023 12.
Article in English | MEDLINE | ID: mdl-38012936

ABSTRACT

Tuberculosis (TB) has long been a major scourge of humankind. Paleopathological and paleomicrobiological studies have revealed the past presence of the disease on a large spatial and temporal scale. The antiquity of the disease has extensively been studied in the Carpathian Basin, given its dynamic population and cultural changes since prehistory. These studies, however, have mainly focused on the populations living during the Common Era. The aim of this paper is to present the published and the recently discovered cases of prehistoric TB, from the Neolithic (6000-4500/4400 BCE) to the Bronze Age (2600/2500-800 BCE) Central Carpathian Basin (Hungary). We summarize 18 published cases and present new cases dating to the Neolithic period and introduce 3 newly discovered Bronze Age cases of TB. Despite extensive research, TB has not yet been identified from the Copper and Iron Ages in the Carpathian Basin. Considering the state of TB research, and supplemented by our prehistoric dataset, the spatio-temporal pattern of the disease can be further elucidated, thus advancing future molecular and paleopathological studies. Our dataset offers comprehensive spatial and temporal information on the spread of the disease in the Carpathian Basin, along with a detailed biological profile of the demonstrated cases and extensive paleopathological descriptions of the observed lesions, complemented by photographic evidence. This invaluable resource paves the way for enhanced understanding and progress in the field.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Osteoarticular , Humans , Hungary , Europe/epidemiology , Tuberculosis, Osteoarticular/microbiology , Paleopathology
2.
PLoS One ; 18(10): e0293090, 2023.
Article in English | MEDLINE | ID: mdl-37851635

ABSTRACT

The Iron Age is characterized by an extended interweaving of movements by Celts in Europe. Several waves of Celts from Western and Central Europe migrated southeast and west from the core area of the La Téne culture (between Bourgogne and Bohemia). Through the analysis of non-metric dental traits, this work aims to understand the biological relationship among Celtic groups arrived in Italy and the Carpathian Basin, as well as between local populations and Celtic newcomers. A total of 10 non-metric dental traits were analyzed to evaluate biological affinities among Celts (Sopron-Krautacker and Pilismarót-Basaharc) and Scythians-related populations from Hungary (Tápiószele), Celts from continental Europe (Switzerland and Austria), two Iron Age Etruscan-Celtic sites from northern Italy (Monterenzio Vecchio and Monte Bibele), 13 Iron Age central-southern Italic necropolises, and the northern Italian Bronze Age necropolis of Scalvinetto. Strontium isotopes were measured on individuals from the necropolis of Monte Bibele to infer their local or non-local origin. Results highlight the existence of statistically significant differences between Celts and autochthonous Italian groups. Celtic groups from Hungary and Italy (i.e., non-local individuals of Monterenzio Vecchio and Monte Bibele) share a similar biological background, supporting the historical records mentioning a common origin for Celts migrated to the eastern and southern borders of today's Europe. The presence of a supposed Steppean ancestry both in Celts from Hungary and Celts from northern Italy corroborates the hypothesis of the existence of a westward migration of individuals and genes from the Steppe towards northern Italy during the Bronze and Iron Age, which contributed to the biological variability of pre-Celtic and later Celtic populations, respectively. Conversely, individuals from central-southern Italy show an autochthonous pre-Iron Age background. Lastly, this work supports the existence of Celtic migratory routes in northern Italy, as shown by biological and cultural admixture between Celts and Italics living together.


Subject(s)
Phenotype , Humans , Hungary , Italy , Europe , Austria
3.
Mol Biol Evol ; 40(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37562011

ABSTRACT

In this study, we report 21 ancient shotgun genomes from present-day Western Hungary, from previously understudied Late Copper Age Baden, and Bronze Age Somogyvár-Vinkovci, Kisapostag, and Encrusted Pottery archeological cultures (3,530-1,620 cal Bce). Our results indicate the presence of high steppe ancestry in the Somogyvár-Vinkovci culture. They were then replaced by the Kisapostag group, who exhibit an outstandingly high (up to ∼47%) Mesolithic hunter-gatherer ancestry, despite this component being thought to be highly diluted by the time of the Early Bronze Age. The Kisapostag population contributed the genetic basis for the succeeding community of the Encrusted Pottery culture. We also found an elevated hunter-gatherer component in a local Baden culture-associated individual, but no connections were proven to the Bronze Age individuals. The hunter-gatherer ancestry in Kisapostag is likely derived from two main sources, one from a Funnelbeaker or Globular Amphora culture-related population and one from a previously unrecognized source in Eastern Europe. We show that this ancestry not only appeared in various groups in Bronze Age Central Europe but also made contributions to Baltic populations. The social structure of Kisapostag and Encrusted Pottery cultures is patrilocal, similarly to most contemporaneous groups. Furthermore, we developed new methods and method standards for computational analyses of ancient DNA, implemented to our newly developed and freely available bioinformatic package. By analyzing clinical traits, we found carriers of aneuploidy and inheritable genetic diseases. Finally, based on genetic and anthropological data, we present here the first female facial reconstruction from the Bronze Age Carpathian Basin.


Subject(s)
Genome, Human , Human Migration , Humans , History, Ancient , Hungary , Europe , DNA, Ancient
4.
Sci Rep ; 12(1): 16982, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36217009

ABSTRACT

The Great Hungarian Plain (GHP) served as a geographic funnel for population mobility throughout prehistory. Genomic and isotopic research demonstrates non-linear genetic turnover and technological shifts between the Copper and Iron Ages of the GHP, which influenced the dietary strategies of numerous cultures that intermixed and overlapped through time. Given the complexities of these prehistoric cultural and demographic processes, this study aims to identify and elucidate diachronic and culture-specific dietary signatures. We report on stable carbon and nitrogen isotope ratios from 74 individuals from nineteen sites in the GHP dating to a ~ 3000-year time span between the Early Bronze and Early Iron Ages. The samples broadly indicate a terrestrial C3 diet with nuanced differences amongst populations and through time, suggesting exogenous influences that manifested in subsistence strategies. Slightly elevated δ15N values for Bronze Age samples imply higher reliance on protein than in the Iron Age. Interestingly, the Füzesabony have carbon values typical of C4 vegetation indicating millet consumption, or that of a grain with comparable δ13C ratios, which corroborates evidence from outside the GHP for its early cultivation during the Middle Bronze Age. Finally, our results also suggest locally diverse subsistence economies for GHP Scythians.


Subject(s)
Carbon , Copper , Bone and Bones/chemistry , Carbon Isotopes/analysis , Diet , Edible Grain/chemistry , Humans , Hungary , Nitrogen Isotopes/analysis
5.
Proc Natl Acad Sci U S A ; 119(15): e2106743119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35389750

ABSTRACT

Human culture, biology, and health were shaped dramatically by the onset of agriculture ∼12,000 y B.P. This shift is hypothesized to have resulted in increased individual fitness and population growth as evidenced by archaeological and population genomic data alongside a decline in physiological health as inferred from skeletal remains. Here, we consider osteological and ancient DNA data from the same prehistoric individuals to study human stature variation as a proxy for health across a transition to agriculture. Specifically, we compared "predicted" genetic contributions to height from paleogenomic data and "achieved" adult osteological height estimated from long bone measurements for 167 individuals across Europe spanning the Upper Paleolithic to Iron Age (∼38,000 to 2,400 B.P.). We found that individuals from the Neolithic were shorter than expected (given their individual polygenic height scores) by an average of −3.82 cm relative to individuals from the Upper Paleolithic and Mesolithic (P = 0.040) and −2.21 cm shorter relative to post-Neolithic individuals (P = 0.068), with osteological vs. expected stature steadily increasing across the Copper (+1.95 cm relative to the Neolithic), Bronze (+2.70 cm), and Iron (+3.27 cm) Ages. These results were attenuated when we additionally accounted for genome-wide genetic ancestry variation: for example, with Neolithic individuals −2.82 cm shorter than expected on average relative to pre-Neolithic individuals (P = 0.120). We also incorporated observations of paleopathological indicators of nonspecific stress that can persist from childhood to adulthood in skeletal remains into our model. Overall, our work highlights the potential of integrating disparate datasets to explore proxies of health in prehistory.


Subject(s)
Agriculture , Body Height , Farmers , Health , Skeleton , Adult , Agriculture/history , Body Height/genetics , Child , DNA, Ancient , Europe , Farmers/history , Genetic Variation , Genomics , Health/history , History, Ancient , Humans , Paleopathology , Skeleton/anatomy & histology
6.
Sci Rep ; 11(1): 7034, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782444

ABSTRACT

Dietary reconstruction is used to make inferences about the subsistence strategies of ancient human populations, but it may also serve as a proxy to characterise their diverse cultural and technological manifestations. Dental microwear and stable isotope analyses have been shown to be successful techniques for paleodietary reconstruction of ancient populations but, despite yielding complementary dietary information, these techniques have rarely been combined within the same study. Here we present for the first time a comprehensive approach to interpreting ancient lifeways through the results of buccal and occlusal microwear, and δ13C and δ15N isotope analyses applied to the same individuals of prehistoric populations of Hungary from the Middle Neolithic to the Late Bronze Age periods. This study aimed to (a) assess if the combination of techniques yields a more precise assessment of past dietary and subsistence practices, and (b) contribute to our understanding of the dietary patterns of the prehistoric Hungarian populations. Overall, no correlations between microwear and δ13C and δ15N isotope variables were observed, except for a relationship between nitrogen and the vertical and horizontal index. However, we found that diachronic differences are influenced by the variation within the period. Particularly, we found differences in microwear and isotope variables between Middle Neolithic sites, indicating that there were different dietary practices among those populations. Additionally, microwear results suggest no changes in the abrasiveness of the diet, neither food processing methods, despite higher C4 plant resource consumption shown by carbon isotopic signal. Thus, we demonstrate that the integration of dental microwear and carbon and nitrogen stable isotope methodologies can provide complementary information for making inferences about paleodietary habits.


Subject(s)
Cheek/pathology , Fossils , Isotopes/analysis , Tooth/pathology , Carbon Isotopes/analysis , Humans , Hungary , Tooth/chemistry
7.
Genome Res ; 31(3): 472-483, 2021 03.
Article in English | MEDLINE | ID: mdl-33579752

ABSTRACT

Ancient DNA sampling methods-although optimized for efficient DNA extraction-are destructive, relying on drilling or cutting and powdering (parts of) bones and teeth. As the field of ancient DNA has grown, so have concerns about the impact of destructive sampling of the skeletal remains from which ancient DNA is obtained. Due to a particularly high concentration of endogenous DNA, the cementum of tooth roots is often targeted for ancient DNA sampling, but destructive sampling methods of the cementum often result in the loss of at least one entire root. Here, we present a minimally destructive method for extracting ancient DNA from dental cementum present on the surface of tooth roots. This method does not require destructive drilling or grinding, and, following extraction, the tooth remains safe to handle and suitable for most morphological studies, as well as other biochemical studies, such as radiocarbon dating. We extracted and sequenced ancient DNA from 30 teeth (and nine corresponding petrous bones) using this minimally destructive extraction method in addition to a typical tooth sampling method. We find that the minimally destructive method can provide ancient DNA that is of comparable quality to extracts produced from teeth that have undergone destructive sampling processes. Further, we find that a rigorous cleaning of the tooth surface combining diluted bleach and UV light irradiation seems sufficient to minimize external contaminants usually removed through the physical removal of a superficial layer when sampling through regular powdering methods.


Subject(s)
DNA, Ancient/isolation & purification , Dental Cementum/chemistry , Tooth/chemistry , Humans , Male , Tooth/anatomy & histology
8.
Int J Paleopathol ; 24: 108-118, 2019 03.
Article in English | MEDLINE | ID: mdl-30342349

ABSTRACT

OBJECTIVE: The prevalence of hyperostosis frontalis interna (HFI) was examined in different periods of the Carpathian Basin from 4900 BCE to 17th century AD. The study seeks to evaluate temporal changes in HFI and the possible impact of lifestyle on it. MATERIALS: The studied material consisted of 4668 crania from Hungary and Serbia. METHODS: The crania were analyzed employing macroscopic and endoscopic examination. RESULTS: In historic periods, sex and age played a pivotal role in HFI development. Among predominantly pastoralist populations of the 5th-8th and 10th centuries, prevalence of HFI was considerably higher than in the medieval populations of the 9th-17th centuries. CONCLUSIONS: In addition to age and sex, other factors could be implicated in HFI development. The physiological effects of the pastoralist lifestyle and diet on insulin regulation could explain the increased risk of developing HFI in the 5th-8th and 10th-century populations. SIGNIFICANCE: The study provides the first comprehensive dataset of HFI from different archaeological periods from the Carpathian Basin. It has implications for lifestyle and risk of HFI development in past populations. LIMITATIONS: The archaeological periods are not equally represented. SUGGESTIONS FOR FURTHER RESEARCH: In order to better understand the etiology of HFI, lifestyle factors can be used to elucidate the risk of developing HFI in ancient populations.


Subject(s)
Frontal Bone/pathology , Hyperostosis Frontalis Interna/history , Life Style , Archaeology/history , Archaeology/methods , Fossils/history , History, 16th Century , History, 17th Century , Humans , Hungary , Paleopathology/methods , Prevalence , Risk , Serbia
9.
Nature ; 551(7680): 368-372, 2017 11 16.
Article in English | MEDLINE | ID: mdl-29144465

ABSTRACT

Ancient DNA studies have established that Neolithic European populations were descended from Anatolian migrants who received a limited amount of admixture from resident hunter-gatherers. Many open questions remain, however, about the spatial and temporal dynamics of population interactions and admixture during the Neolithic period. Here we investigate the population dynamics of Neolithization across Europe using a high-resolution genome-wide ancient DNA dataset with a total of 180 samples, of which 130 are newly reported here, from the Neolithic and Chalcolithic periods of Hungary (6000-2900 bc, n = 100), Germany (5500-3000 bc, n = 42) and Spain (5500-2200 bc, n = 38). We find that genetic diversity was shaped predominantly by local processes, with varied sources and proportions of hunter-gatherer ancestry among the three regions and through time. Admixture between groups with different ancestry profiles was pervasive and resulted in observable population transformation across almost all cultural transitions. Our results shed new light on the ways in which gene flow reshaped European populations throughout the Neolithic period and demonstrate the potential of time-series-based sampling and modelling approaches to elucidate multiple dimensions of historical population interactions.


Subject(s)
Farmers/history , Gene Flow/genetics , Genetic Variation , Human Migration/history , DNA, Ancient/analysis , Datasets as Topic , Female , Germany , History, Ancient , Humans , Hungary , Male , Population Dynamics , Spain , Spatio-Temporal Analysis
10.
PLoS One ; 12(10): e0185966, 2017.
Article in English | MEDLINE | ID: mdl-29023477

ABSTRACT

At the Abony-Turjányos dulo site, located in Central Hungary, a rescue excavation was carried out. More than 400 features were excavated and dated to the Protoboleráz horizon, at the beginning of the Late Copper Age in the Carpathian Basin, between 3780-3650 cal BC. Besides the domestic and economic units, there were two special areas, with nine-nine pits that differed from the other archaeological features of the site. In the northern pit group seven pits contained human remains belonging to 48 individuals. Some of them were buried carefully, while others were thrown into the pits. The aim of this study is to present the results of the paleopathological and molecular analysis of human remains from this Late Copper Age site. The ratio of neonates to adults was high, 33.3%. Examination of the skeletons revealed a large number of pathological cases, enabling reconstruction of the health profile of the buried individuals. Based on the appearance and frequency of healed ante- and peri mortem trauma, inter-personal (intra-group) violence was characteristic in the Abony Late Copper Age population. However other traces of paleopathology were observed on the bones that appear not to have been caused by warfare or inter-group violence. The remains of one individual demonstrated a rare set of bone lesions that indicate the possible presence of leprosy (Hansen's disease). The most characteristic lesions occurred on the bones of the face, including erosion of the nasal aperture, atrophy of the anterior nasal spine, inflammation of the nasal bone and porosity on both the maxilla and the bones of the lower legs. In a further four cases, leprosy infection is suspected but other infections cannot be excluded. The morphologically diagnosed possible leprosy case significantly modifies our knowledge about the timescale and geographic spread of this specific infectious disease. However, it is not possible to determine the potential connections between the cases of possible leprosy and the special burial circumstances.


Subject(s)
Leprosy , Mycobacterium leprae/genetics , Paleopathology/methods , Adolescent , Adult , Burial , Child , Child, Preschool , Female , History, Ancient , Humans , Hungary , Hyperostosis/pathology , Infant , Leprosy/epidemiology , Leprosy/history , Leprosy/microbiology , Male , Middle Aged , Mycobacterium tuberculosis/genetics , Young Adult
11.
Sci Rep ; 6: 33446, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27633963

ABSTRACT

The ancient Hungarians originated from the Ural region in today's central Russia and migrated across the Eastern European steppe, according to historical sources. The Hungarians conquered the Carpathian Basin 895-907 AD, and admixed with the indigenous communities. Here we present mitochondrial DNA results from three datasets: one from the Avar period (7(th)-9(th) centuries) of the Carpathian Basin (n = 31); one from the Hungarian conquest-period (n = 76); and a completion of the published 10(th)-12(th) century Hungarian-Slavic contact zone dataset by four samples. We compare these mitochondrial DNA hypervariable segment sequences and haplogroup results with published ancient and modern Eurasian data. Whereas the analyzed Avars represents a certain group of the Avar society that shows East and South European genetic characteristics, the Hungarian conquerors' maternal gene pool is a mixture of West Eurasian and Central and North Eurasian elements. Comprehensively analyzing the results, both the linguistically recorded Finno-Ugric roots and historically documented Turkic and Central Asian influxes had possible genetic imprints in the conquerors' genetic composition. Our data allows a complex series of historic and population genetic events before the formation of the medieval population of the Carpathian Basin, and the maternal genetic continuity between 10(th)-12(th) century and modern Hungarians.


Subject(s)
Genetics, Population , Phylogeny , Female , Genetic Variation , Geography , Haplotypes/genetics , Humans , Hungary , Principal Component Analysis , Time Factors
12.
Tuberculosis (Edinb) ; 95 Suppl 1: S18-22, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25857937

ABSTRACT

Alsónyék-Bátaszék in Southern Hungary is one of the largest late Neolithic settlements and cemeteries excavated in Central Europe. In total, 2359 burials from the Late Neolithic - Early Copper Age Lengyel culture were found between 2006 and 2009 [1]. Anthropological investigations previously carried out on individuals from this site revealed an interesting paleopathological case of tuberculosis in the form of Pott's disease dated to the early 5(th) millennium BC. In this study, selected specimens from this osteoarcheological series were subjected to paleomicrobiological analysis to establish the presence of MTBC bacteria. As all individuals showing clear osteological signs of TB infection belonged to a single grave group, 38 individuals from this grave group were analysed. The sample included the case of Pott's disease as well as individuals both with and without osseous TB manifestations. The detection of TB DNA in the individual with Pott's disease provided further evidence for the occurrence of TB in Neolithic populations of Europe. Moreover, our molecular analysis indicated that several other individuals of the same grave group were also infected with TB, opening the possibility for further analyses of this unique Neolithic skeletal series.


Subject(s)
Tuberculosis, Osteoarticular/history , Adolescent , Adult , Biomarkers/metabolism , Child , DNA, Bacterial/genetics , Female , History, Ancient , Humans , Hungary , Male , Middle Aged , Mycobacterium tuberculosis/genetics , Paleopathology , Tuberculosis, Osteoarticular/genetics , Young Adult
13.
Proc Biol Sci ; 282(1805)2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25808890

ABSTRACT

Farming was established in Central Europe by the Linearbandkeramik culture (LBK), a well-investigated archaeological horizon, which emerged in the Carpathian Basin, in today's Hungary. However, the genetic background of the LBK genesis is yet unclear. Here we present 9 Y chromosomal and 84 mitochondrial DNA profiles from Mesolithic, Neolithic Starcevo and LBK sites (seventh/sixth millennia BC) from the Carpathian Basin and southeastern Europe. We detect genetic continuity of both maternal and paternal elements during the initial spread of agriculture, and confirm the substantial genetic impact of early southeastern European and Carpathian Basin farming cultures on Central European populations of the sixth-fourth millennia BC. Comprehensive Y chromosomal and mitochondrial DNA population genetic analyses demonstrate a clear affinity of the early farmers to the modern Near East and Caucasus, tracing the expansion from that region through southeastern Europe and the Carpathian Basin into Central Europe. However, our results also reveal contrasting patterns for male and female genetic diversity in the European Neolithic, suggesting a system of patrilineal descent and patrilocal residential rules among the early farmers.


Subject(s)
Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Farmers , Social Behavior , Agriculture , Archaeology , Emigration and Immigration , Europe , Female , Genetic Variation , Humans , Male , Molecular Sequence Data , Sequence Analysis, DNA , Social Environment
SELECTION OF CITATIONS
SEARCH DETAIL
...