Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Int J Infect Dis ; 146: 107161, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992789

ABSTRACT

OBJECTIVES: To assess the safety and immunogenicity of a fourth vaccination (second booster) in individuals aged ≥75 years. METHODS: Participants were randomized to BNT162b2 (Comirnaty, 30 µg) or messenger RNA (mRNA)-1273 (Spikevax, 100 µg). The primary end point was the rate of two-fold antibody titer increase 14 days after vaccination, targeting the receptor binding domain (RBD) region of wild-type SARS-CoV-2. The secondary end points included changes in neutralizing activity against wild-type and 25 variants. Safety was assessed by monitoring solicited adverse events (AEs) for 7 days. RESULTS: A total of 269 participants (mean age 81 years, mRNA-1273 n = 135/BNT162b2 n = 134) were included. Two-fold anti-RBD immunoglobulin (Ig) G titer increase was achieved by 101 of 129 (78%) and 116 of 133 (87%) subjects in the BNT162b2 and the mRNA-1273 group, respectively (P = 0.054). A second booster of mRNA-1273 provided higher anti-RBD IgG geometric mean titer: 21.326 IU/mL (95% confidence interval: 18.235-24.940) vs BNT162b2: 15.181 IU/mL (95% confidence interval: 13.172-17.497). A higher neutralizing activity was noted for the mRNA-1273 group. The most frequent AE was pain at the injection site (51% in mRNA-1273 and 48% in BNT162b2). Participants in the mRNA-1273 group had less vaccine-related AEs (30% vs 39%). CONCLUSIONS: A second booster of either BNT162b2 or mRNA-1273 provided substantial IgG increase. Full-dose mRNA-1273 provided higher IgG levels and neutralizing capacity against SARS-CoV-2, with similar safety profile for subjects of advanced age.

2.
Infection ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017997

ABSTRACT

BACKGROUND: WHO postulates the application of adaptive design features in the global clinical trial ecosystem. However, the adaptive platform trial (APT) methodology has not been widely adopted in clinical research on vaccines. METHODS: The VACCELERATE Consortium organized a two-day workshop to discuss the applicability of APT methodology in vaccine trials under non-pandemic as well as pandemic conditions. Core aspects of the discussions are summarized in this article. RESULTS: An "ever-warm" APT appears ideally suited to improve efficiency and speed of vaccine research. Continuous learning based on accumulating APT trial data allows for pre-planned adaptations during its course. Given the relative design complexity, alignment of all stakeholders at all stages of an APT is central. Vaccine trial modelling is crucial, both before and in a pandemic emergency. Various inferential paradigms are possible (frequentist, likelihood, or Bayesian). The focus in the interpandemic interval may be on research gaps left by industry trials. For activation in emergency, template Disease X protocols of syndromal design for pathogens yet unknown need to be stockpiled and updated regularly. Governance of a vaccine APT should be fully integrated into supranational pandemic response mechanisms. DISCUSSION: A broad range of adaptive features can be applied in platform trials on vaccines. Faster knowledge generation comes with increased complexity of trial design. Design complexity should not preclude simple execution at trial sites. Continuously generated evidence represents a return on investment that will garner societal support for sustainable funding. Adaptive design features will naturally find their way into platform trials on vaccines.

3.
Stat Med ; 43(18): 3447-3462, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38852991

ABSTRACT

Multi-arm multi-stage (MAMS) platform trials efficiently compare several treatments with a common control arm. Crucially MAMS designs allow for adjustment for multiplicity if required. If for example, the active treatment arms in a clinical trial relate to different dose levels or different routes of administration of a drug, the strict control of the family-wise error rate (FWER) is paramount. Suppose a further treatment becomes available, it is desirable to add this to the trial already in progress; to access both the practical and statistical benefits of the MAMS design. In any setting where control of the error rate is required, we must add corresponding hypotheses without compromising the validity of the testing procedure.To strongly control the FWER, MAMS designs use pre-planned decision rules that determine the recruitment of the next stage of the trial based on the available data. The addition of a treatment arm presents an unplanned change to the design that we must account for in the testing procedure. We demonstrate the use of the conditional error approach to add hypotheses to any testing procedure that strongly controls the FWER. We use this framework to add treatments to a MAMS trial in progress. Simulations illustrate the possible characteristics of such procedures.


Subject(s)
Research Design , Humans , Computer Simulation , Clinical Trials as Topic/methods , Models, Statistical
4.
Stat Methods Med Res ; 33(6): 1069-1092, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38592333

ABSTRACT

For the analysis of time-to-event data, frequently used methods such as the log-rank test or the Cox proportional hazards model are based on the proportional hazards assumption, which is often debatable. Although a wide range of parametric and non-parametric methods for non-proportional hazards has been proposed, there is no consensus on the best approaches. To close this gap, we conducted a systematic literature search to identify statistical methods and software appropriate under non-proportional hazard. Our literature search identified 907 abstracts, out of which we included 211 articles, mostly methodological ones. Review articles and applications were less frequently identified. The articles discuss effect measures, effect estimation and regression approaches, hypothesis tests, and sample size calculation approaches, which are often tailored to specific non-proportional hazard situations. Using a unified notation, we provide an overview of methods available. Furthermore, we derive some guidance from the identified articles.


Subject(s)
Clinical Trials as Topic , Proportional Hazards Models , Humans , Clinical Trials as Topic/statistics & numerical data , Sample Size , Software
5.
Clin Pharmacol Ther ; 116(1): 52-63, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38529786

ABSTRACT

Although platform trials have many benefits, the complexity of these designs may result not only in increased methodological but also regulatory and ethical challenges. These aspects were addressed as part of the IMI project EU Patient-Centric Clinical Trial Platforms (EU-PEARL). We reviewed the available guidelines on platform trials in the European Union and the United States. This is supported and complemented by feedback received from regulatory interactions with the European Medicines Agency and the US Food and Drug Administration. Throughout the project we collected the needs of all relevant stakeholders including ethics committees, regulators, and health technology assessment bodies through active dialog and dedicated stakeholder workshops. Furthermore, we focused on methodological aspects and where applicable identified the corresponding guidance. Learnings from the guideline review, regulatory interactions, and workshops are provided. Based on these, a master protocol template was developed. Issues that still need harmonization or clarification in guidelines or where further methodological research is needed are also presented. These include questions around clinical trial submissions in Europe, the need for multiplicity control across the whole master protocol, the use of non-concurrent controls, and the impact of different randomization schemes. Master protocols are an efficient and patient-centered clinical trial design that can expedite drug development. However, they can also introduce additional operational and regulatory complexities. It is important to understand the different requirements of stakeholders upfront and address them in the trial. While relevant guidance is increasing, early dialog with relevant stakeholders can help to further support such designs.


Subject(s)
Clinical Trials as Topic , Drug Development , European Union , United States Food and Drug Administration , Humans , Clinical Trials as Topic/legislation & jurisprudence , Clinical Trials as Topic/methods , Clinical Trials as Topic/standards , United States , Drug Development/legislation & jurisprudence , Drug Development/methods , Research Design , Guidelines as Topic , Technology Assessment, Biomedical/legislation & jurisprudence
6.
Trials ; 25(1): 204, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515103

ABSTRACT

BACKGROUND: Interventional clinical studies conducted in the regulated drug research environment are designed using International Council for Harmonisation (ICH) regulatory guidance documents: ICH E6 (R2) Good Clinical Practice-scientific guideline, first published in 2002 and last updated in 2016. This document provides an international ethical and scientific quality standard for designing and conducting trials that involve the participation of human subjects. Recently, there has been heightened awareness of the importance of integrated research platform trials (IRPs) designed to evaluate multiple therapies simultaneously. The use of a single master protocol as a key source document to fulfill trial conduct obligations has resulted in a re-examination of the templates used to fulfill the dynamic regulatory and modern drug development environment challenges. METHODS: Regulatory medical writing, biostatistical, and other members of EU Patient-cEntric clinicAl tRial pLatforms (EU-PEARL) developed the suite of templates for IRPs over a 3.5-year period. Stakeholders contributing expertise included academic hospitals, pharmaceutical companies, non-governmental organizations, patient representative groups, and small and medium-sized enterprises (SMEs). RESULTS: The suite of templates for IRPs based on TransCelerate's Common Protocol Template (CPT) and statistical analysis plan (SAP) should help authors navigate relevant guidelines as they create study design content relevant for today's IRP studies. It offers practical suggestions for adaptive platform designs which offer flexible features such as dropping treatments for futility or adding new treatments to be tested during a trial. The EU-PEARL suite of templates for IRPs comprises a preface, followed by the actual resource. The preface clarifies the intended use and underlying principles that inform resource utility. The preface lists references contributing to the development of the resource. The resource includes TransCelerate CPT guidance text, and EU-PEARL-derived guidance text, distinguished from one another using shading. Rationale comments are used throughout for clarification purposes. In addition, a user-friendly, functional, and informative Platform Trials Best Practices tool to support the setup, design, planning, implementation, and conduct of complex and innovative trials to support multi-sourced/multi-company platform trials is also provided. Together, the EU-PEARL suite of templates and the Platform Trials Best Practices tool constitute the reference user manual. CONCLUSIONS: This publication is intended to enhance the use, understanding, and dissemination of the EU-PEARL suite of templates for designing IRPs. The reference user manual and the associated website ( http://www.eu-pearl ) should facilitate the designing of IRP trials.


Subject(s)
Clinical Trials as Topic , Research Design , Clinical Trials as Topic/standards
7.
Stat Methods Med Res ; 33(4): 589-610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38465602

ABSTRACT

Survival time is the primary endpoint of many randomized controlled trials, and a treatment effect is typically quantified by the hazard ratio under the assumption of proportional hazards. Awareness is increasing that in many settings this assumption is a priori violated, for example, due to delayed onset of drug effect. In these cases, interpretation of the hazard ratio estimate is ambiguous and statistical inference for alternative parameters to quantify a treatment effect is warranted. We consider differences or ratios of milestone survival probabilities or quantiles, differences in restricted mean survival times, and an average hazard ratio to be of interest. Typically, more than one such parameter needs to be reported to assess possible treatment benefits, and in confirmatory trials, the according inferential procedures need to be adjusted for multiplicity. A simple Bonferroni adjustment may be too conservative because the different parameters of interest typically show considerable correlation. Hence simultaneous inference procedures that take into account the correlation are warranted. By using the counting process representation of the mentioned parameters, we show that their estimates are asymptotically multivariate normal and we provide an estimate for their covariance matrix. We propose according to the parametric multiple testing procedures and simultaneous confidence intervals. Also, the logrank test may be included in the framework. Finite sample type I error rate and power are studied by simulation. The methods are illustrated with an example from oncology. A software implementation is provided in the R package nph.


Subject(s)
Research Design , Software , Proportional Hazards Models , Computer Simulation , Survival Rate , Survival Analysis
8.
Vaccine ; 41(48): 7166-7175, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37919141

ABSTRACT

BACKGROUND: Vaccination remains crucial for protection against severe SARS-CoV-2 infection, especially for people of advanced age, however, optimal dosing regimens are as yet lacking. METHODS: EU-COVAT-1-AGED Part A is a randomised controlled, adaptive, multicentre phase II trial evaluating safety and immunogenicity of a 3rd vaccination (1st booster) in individuals ≥75 years. Fifty-three participants were randomised to full-doses of either mRNA-1273 (Spikevax®, 100 µg) or BNT162b2 (Comirnaty®, 30 µg). The primary endpoint was the rate of 2-fold circulating antibody titre increase 14 days post-vaccination measured by quantitative electrochemiluminescence (ECL) immunoassay, targeting RBD region of Wuhan wild-type SARS-CoV-2. Secondary endpoints included the changes in neutralising capacity against wild-type and 25 variants of concern at 14 days and up to 12 months. Safety was assessed by monitoring of solicited adverse events (AEs) for seven days after on-study vaccination. Unsolicited AEs were collected until the end of follow-up at 12 months, SAEs were pursued for a further 30 days. RESULTS: Between 08th of November 2021 and 04th of January 2022, 53 participants ≥75 years received a COVID-19 vaccine as 1st booster. Fifty subjects (BNT162b2 n = 25/mRNA-1273 n = 25) were included in the analyses for immunogenicity at day 14. The primary endpoint of a 2-fold anti-RBD IgG titre increase 14 days after vaccination was reached for all subjects. A 3rd vaccination of full-dose mRNA-1273 provided higher anti-RBD IgG titres (Geometric mean titre) D14 mRNA-127310711 IU/mL (95 %-CI: 8003;14336) vs. BNT162b2: 7090 IU/mL (95 %-CI: 5688;8837). We detected a pattern showing higher neutralising capacity of full-dose mRNA-1273 against wild-type as well as for 23 out of 25 tested variants. INTERPRETATION: Third doses of either BNT162b2 or mRNA-1273 provide substantial circulating antibody increase 14 days after vaccination. Full-dose mRNA-1273 provides higher antibody levels with an overall similar safety profile for people ≥75 years. FUNDING: This trial was funded by the European Commission (Framework Program HORIZON 2020).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , Humans , Adult , Aged , COVID-19 Vaccines/adverse effects , RNA, Messenger , Immunoglobulin G , Immunogenicity, Vaccine , Antibodies, Viral , Antibodies, Neutralizing
9.
Stat Med ; 42(14): 2475-2495, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37005003

ABSTRACT

Platform trials evaluate multiple experimental treatments under a single master protocol, where new treatment arms are added to the trial over time. Given the multiple treatment comparisons, there is the potential for inflation of the overall type I error rate, which is complicated by the fact that the hypotheses are tested at different times and are not necessarily pre-specified. Online error rate control methodology provides a possible solution to the problem of multiplicity for platform trials where a relatively large number of hypotheses are expected to be tested over time. In the online multiple hypothesis testing framework, hypotheses are tested one-by-one over time, where at each time-step an analyst decides whether to reject the current null hypothesis without knowledge of future tests but based solely on past decisions. Methodology has recently been developed for online control of the false discovery rate as well as the familywise error rate (FWER). In this article, we describe how to apply online error rate control to the platform trial setting, present extensive simulation results, and give some recommendations for the use of this new methodology in practice. We show that the algorithms for online error rate control can have a substantially lower FWER than uncorrected testing, while still achieving noticeable gains in power when compared with the use of a Bonferroni correction. We also illustrate how online error rate control would have impacted a currently ongoing platform trial.


Subject(s)
Research Design , Humans , Data Interpretation, Statistical , Computer Simulation
10.
PLoS One ; 18(3): e0281674, 2023.
Article in English | MEDLINE | ID: mdl-36893087

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD) and a disease with high unmet medical need. Platform trials provide great benefits for sponsors and trial participants in terms of accelerating drug development programs. In this article, we describe some of the activities of the EU-PEARL consortium (EU Patient-cEntric clinicAl tRial pLatforms) regarding the use of platform trials in NASH, in particular the proposed trial design, decision rules and simulation results. For a set of assumptions, we present the results of a simulation study recently discussed with two health authorities and the learnings from these meetings from a trial design perspective. Since the proposed design uses co-primary binary endpoints, we furthermore discuss the different options and practical considerations for simulating correlated binary endpoints.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Clinical Trials, Phase II as Topic , Research Design , Endpoint Determination
11.
Trials ; 24(1): 213, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36949445

ABSTRACT

BACKGROUND: Immunosuppression after kidney transplantation is mainly guided via plasma tacrolimus trough level, which cannot sufficiently predict allograft rejection and infection. The plasma load of the non-pathogenic and highly prevalent torque teno virus (TTV) is associated with the immunosuppression of its host. Non-interventional studies suggest the use of TTV load to predict allograft rejection and infection. The primary objective of the current trial is to demonstrate the safety, tolerability and preliminary efficacy of TTV-guided immunosuppression. METHODS: For this purpose, a randomised, controlled, interventional, two-arm, non-inferiority, patient- and assessor-blinded, investigator-driven phase II trial was designed. A total of 260 stable, low-immunological-risk adult recipients of a kidney graft with tacrolimus-based immunosuppression and TTV infection after month 3 post-transplantation will be recruited in 13 academic centres in six European countries. Subjects will be randomised in a 1:1 ratio (allocation concealment) to receive tacrolimus either guided by TTV load or according to the local centre standard for 9 months. The primary composite endpoint includes the occurrence of infections, biopsy-proven allograft rejection, graft loss, or death. The main secondary endpoints include estimated glomerular filtration rate, graft rejection detected by protocol biopsy at month 12 post-transplantation (including molecular microscopy), development of de novo donor-specific antibodies, health-related quality of life, and drug adherence. In parallel, a comprehensive biobank will be established including plasma, serum, urine and whole blood. The date of the first enrolment was August 2022 and the planned end is April 2025. DISCUSSION: The assessment of individual kidney transplant recipient immune function might enable clinicians to personalise immunosuppression, thereby reducing infection and rejection. Moreover, the trial might act as a proof of principle for TTV-guided immunosuppression and thus pave the way for broader clinical applications, including as guidance for immune modulators or disease-modifying agents. TRIAL REGISTRATION: EU CT-Number: 2022-500024-30-00.


Subject(s)
Kidney Transplantation , Torque teno virus , Adult , Humans , Tacrolimus/adverse effects , Kidney Transplantation/adverse effects , Quality of Life , Immunosuppression Therapy , Graft Rejection/diagnosis , Graft Rejection/prevention & control , Immunosuppressive Agents/adverse effects
12.
Clin Pharmacokinet ; 62(1): 77-87, 2023 01.
Article in English | MEDLINE | ID: mdl-36471223

ABSTRACT

BACKGROUND AND OBJECTIVE: Exhaustive pharmacokinetic (PK) studies in paediatric patients are unavailable for most antibiotics and feasibility of PK studies is limited by challenges, such as low blood volume and venipuncture-related pain. Microdialysis (MD) represents a promising method to overcome these obstacles. The aim of this proof-of-concept study was to develop and validate modified MD catheters that can be used to obtain concentration-time profiles of antibiotics in paediatric patients. METHODS: Following extensive in vitro MD experiments, a prospective open-labelled study in ten healthy adult volunteers (HVs) was conducted. Subjects received a single intravenous dose of 1000 mg vancomycin, then plasma and intravascular microdialysate were sampled over 24 h. In vivo MD probe calibration was conducted using the retrodialysis technique. Plasma protein binding was measured using ultrafiltration. Confirmation of the measurements was performed using a Bland-Altman plot, relevant PK parameters were calculated, and a pharmacometric model was established. RESULTS: No safety issues were encountered. The concentration-time curves of microdialysate and plasma measurements showed good alignment. The Bland-Altman plot yielded a mean bias of 0.19 mg/L and 95% limits of agreement of - 9.34 to 9.71 mg/L. A two-compartment model best described plasma PK, model-based estimates for recovery of the MD probes being in high agreement with the observed values. Quantified estimates of fraction unbound were comparable between plasma and microdialysate (p = 0.56). CONCLUSIONS: An innovative MD catheter that can be inserted into small intravenous lines was successfully developed and applied in HV. This proof-of-concept study is encouraging and opens the way to further experiments leading towards future use of MD in paediatric patients.


Subject(s)
Anti-Bacterial Agents , Vancomycin , Humans , Adult , Child , Microdialysis/methods , Prospective Studies , Anti-Bacterial Agents/pharmacokinetics , Catheters
13.
Sci Rep ; 12(1): 20117, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418458

ABSTRACT

SARS-CoV-2 gains cell entry via angiotensin-converting enzyme (ACE) 2, a membrane-bound enzyme of the "alternative" (alt) renin-angiotensin system (RAS). ACE2 counteracts angiotensin II by converting it to potentially protective angiotensin 1-7. Using mass spectrometry, we assessed key metabolites of the classical RAS (angiotensins I-II) and alt-RAS (angiotensins 1-7 and 1-5) pathways as well as ACE and ACE2 concentrations in 159 patients hospitalized with COVID-19, stratified by disease severity (severe, n = 76; non-severe: n = 83). Plasma renin activity (PRA-S) was calculated as the sum of RAS metabolites. We estimated ACE activity using the angiotensin II:I ratio (ACE-S) and estimated systemic alt-RAS activation using the ratio of alt-RAS axis metabolites to PRA-S (ALT-S). We applied mixed linear models to assess how PRA-S and ACE/ACE2 concentrations affected ALT-S, ACE-S, and angiotensins II and 1-7. Median angiotensin I and II levels were higher with severe versus non-severe COVID-19 (angiotensin I: 86 versus 30 pmol/L, p < 0.01; angiotensin II: 114 versus 58 pmol/L, p < 0.05), demonstrating activation of classical RAS. The difference disappeared with analysis limited to patients not taking a RAS inhibitor (angiotensin I: 40 versus 31 pmol/L, p = 0.251; angiotensin II: 76 versus 99 pmol/L, p = 0.833). ALT-S in severe COVID-19 increased with time (days 1-6: 0.12; days 11-16: 0.22) and correlated with ACE2 concentration (r = 0.831). ACE-S was lower in severe versus non-severe COVID-19 (1.6 versus 2.6; p < 0.001), but ACE concentrations were similar between groups and correlated weakly with ACE-S (r = 0.232). ACE2 and ACE-S trajectories in severe COVID-19, however, did not differ between survivors and non-survivors. Overall RAS alteration in severe COVID-19 resembled severity of disease-matched patients with influenza. In mixed linear models, renin activity most strongly predicted angiotensin II and 1-7 levels. ACE2 also predicted angiotensin 1-7 levels and ALT-S. No single factor or the combined model, however, could fully explain ACE-S. ACE2 and ACE-S trajectories in severe COVID-19 did not differ between survivors and non-survivors. In conclusion, angiotensin II was elevated in severe COVID-19 but was markedly influenced by RAS inhibitors and driven by overall RAS activation. ACE-S was significantly lower with severe COVID-19 and did not correlate with ACE concentrations. A shift to the alt-RAS axis because of increased ACE2 could partially explain the relative reduction in angiotensin II levels.


Subject(s)
COVID-19 , Peptide Hormones , Humans , Angiotensin-Converting Enzyme 2 , Renin-Angiotensin System , Angiotensin I , Angiotensin II , SARS-CoV-2 , Renin , Antihypertensive Agents
14.
Trials ; 23(1): 865, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36209129

ABSTRACT

BACKGROUND: In the ongoing COVID-19 pandemic, advanced age is a risk factor for a severe clinical course of SARS-CoV-2 infection. Thus, older people may benefit in particular from booster doses with potent vaccines and research should focus on optimal vaccination schedules. In addition to each individual's medical history, immunosenescence warrants further research in this population. This study investigates vaccine-induced immune response over 1 year. METHODS/DESIGN: EU-COVAT-1-AGED is a randomised controlled, adaptive, multicentre phase II protocol evaluating different booster strategies in individuals aged ≥75 years (n=600) already vaccinated against SARS-CoV-2. The initial protocol foresaw a 3rd vaccination (1st booster) as study intervention. The present modified Part B of this trial foresees testing of mRNA-1273 (Spikevax®) vs. BNT162b2 (Comirnaty®) as 4th vaccination dose (2nd booster) for comparative assessment of their immunogenicity and safety against SARS-CoV-2 wild-type and variants. The primary endpoint of the trial is to assess the rate of 2-fold antibody titre increase 14 days after vaccination measured by quantitative enzyme-linked immunosorbent assay (Anti-RBD-ELISA) against wild-type virus. Secondary endpoints include the changes in neutralising antibody titres (Virus Neutralisation Assay) against wild-type as well as against Variants of Concern (VOC) at 14 days and up to 12 months. T cell response measured by qPCR will be performed in subgroups at 14 days as exploratory endpoint. Biobanking samples are being collected for neutralising antibody titres against potential future VOC. Furthermore, potential correlates between humoral immune response, T cell response and neutralising capacity will be assessed. The primary endpoint analysis will be triggered as soon as for all patients the primary endpoint (14 days after the 4th vaccination dose) has been observed. DISCUSSION: The EU-COVAT-1-AGED trial Part B compares immunogenicity and safety of mRNA-1273 (Spikevax®) and BNT162b2 (Comirnaty®) as 4th SARS-CoV-2 vaccine dose in adults ≥75 years of age. The findings of this trial have the potential to optimise the COVID-19 vaccination strategy for this at-risk population. TRIAL REGISTRATION: ClinicalTrials.gov NCT05160766 . Registered on 16 December 2021. PROTOCOL VERSION: V06_0: 27 July 2022.


Subject(s)
COVID-19 , Vaccines , Adult , Aged , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , Biological Specimen Banks , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Clinical Trials, Phase II as Topic , Humans , Pandemics/prevention & control , Randomized Controlled Trials as Topic , SARS-CoV-2
17.
J Antimicrob Chemother ; 77(11): 3086-3092, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36039038

ABSTRACT

OBJECTIVES: The efficacy and quality of generic antibacterial drug formulations are often questioned by both healthcare specialists and patients. Therefore, the present study investigated the interchangeability of generic drugs with their originators by comparing bioequivalence parameters and stability data of generic cefepime, linezolid and piperacillin/tazobactam with their respective originator drugs. METHODS: In this open-label, randomized, crossover bioequivalence study, three groups of 12 healthy volunteers each received a single intravenous infusion of either 2 g of cefepime or 4.5 g of piperacillin/tazobactam and two generic formulations, or 600 mg of linezolid and one generic formulation. Plasma sampling was performed, with a 5 day washout period between study days. Stability was tested by storing reconstituted generic and originator products according to their own storage specifications and those of the comparator products. All concentrations were measured by LC-MS. RESULTS: Similar ratios of generic/originator (90% CI) Cmax were observed for Cefepime-MIP/Maxipime [93.7 (88.4-99.4)], Cefepime Sandoz/Maxipime [95.9 (89.1-103.2)], Linezolid Kabi/Zyvoxid [104.5 (91.1-119.9)], Piperacillin Kabi/Tazobac [95.9 (90.4-101.7)], Piperacillin Aurobindo/Tazobac [99.7 (84.9-104.7)], Tazobactam Kabi/Tazobac [93.4 (87.4-99.8)] and Tazobactam Aurobindo/Tazobac [97.4 (89.7-105.8)]. Accordingly, similar ratios of AUC0-t were observed for Cefepime-MIP/Maxipime [91.1 (87.6-94.8)], Cefepime Sandoz/Maxipime [97.9 (92.5-103.5)], Linezolid Kabi/Zyvoxid [99.7 (93.3-106.6)], Piperacillin Kabi/Tazobac [92.2 (88.3-96.3)], Piperacillin Aurobindo/Tazobac [99.9 (97.0-102.8)], Tazobactam Kabi/Tazobac [91.4 (86.4-96.7)] and Tazobactam Aurobindo/Tazobac [98.8 (94.3-103.6)]. Stable and similar concentrations were measured for all contiguous substances, regardless of storage conditions. CONCLUSIONS: Compared with their respective originator drugs, generic cefepime, linezolid and piperacillin/tazobactam met the predetermined bioequivalence criteria. All formulations were stable under the storage conditions of their respective comparators.


Subject(s)
Drugs, Generic , Piperacillin , Humans , Cefepime , Linezolid , Therapeutic Equivalency , Healthy Volunteers , Piperacillin, Tazobactam Drug Combination , Piperacillin/therapeutic use , Tazobactam , Anti-Bacterial Agents/therapeutic use , Penicillanic Acid/therapeutic use
18.
PLoS One ; 17(6): e0269369, 2022.
Article in English | MEDLINE | ID: mdl-35709188

ABSTRACT

Recently there have been tremendous efforts to develop statistical procedures which allow to determine subgroups of patients for which certain treatments are effective. This article focuses on the selection of prognostic and predictive genetic biomarkers based on a relatively large number of candidate Single Nucleotide Polymorphisms (SNPs). We consider models which include prognostic markers as main effects and predictive markers as interaction effects with treatment. We compare different high-dimensional selection approaches including adaptive lasso, a Bayesian adaptive version of the Sorted L-One Penalized Estimator (SLOBE) and a modified version of the Bayesian Information Criterion (mBIC2). These are compared with classical multiple testing procedures for individual markers. Having identified predictive markers we consider several different approaches how to specify subgroups susceptible to treatment. Our main conclusion is that selection based on mBIC2 and SLOBE has similar predictive performance as the adaptive lasso while including substantially fewer biomarkers.


Subject(s)
Genomics , Polymorphism, Single Nucleotide , Bayes Theorem , Biomarkers , Genetic Markers , Humans , Prognosis
20.
Sci Rep ; 12(1): 5657, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35383211

ABSTRACT

New recommendations on evaluation of peritoneal membrane function suggest ruling out catheter dysfunction when evaluating patients with low ultrafiltration capacity. We introduce the use of a combination of parameters obtained from the cycler software PD Link with HomeChoicePro (Baxter International Inc., Illinois, United States) cyclers for predicting catheter dysfunction in automated peritoneal dialysis patients (APD). Out of 117 patients treated at the Medical University of Vienna between 2015 and 2021, we retrospectively identified all patients with verified catheter dysfunction (n = 14) and compared them to controls without clinical evidence of mechanical catheter problems and a recent X-ray confirming PD catheter tip in the rectovesical/rectouterine space (n = 19). All patients had a coiled single-cuff PD catheter, performed tidal PD, and received neutral pH bicarbonate/lactate-buffered PD fluids with low-glucose degradation products on APD. Icodextrin-containing PD fluids were used for daytime dwells. We retrieved cycler data for seven days each and tested parameters' predictive capability of catheter dysfunction. Total number of alarms/week > 7 as single predictive parameter of catheter dislocation identified 85.7% (sensitivity) of patients with dislocated catheter, whereas 31.6% (1-specificity) of control patients were false positive. A combination of parameters (number of alarms/week > 7, total drain time > 22 min, ultrafiltration of last fill < 150 mL) where at least two of three parameters appeared identified the same proportion of patients with catheter dislocation, but was more accurate in identifying controls (21.1% false positive). In contrast to yearly PET measurements, an easily applicable combination of daily cycler readout parameters, also available in new APD systems connected to remote monitoring platforms shows potential for diagnosis of catheter dysfunction during routine follow-up.


Subject(s)
Dialysis Solutions , Peritoneal Dialysis , Catheters , Dialysis Solutions/adverse effects , Glucose/metabolism , Humans , Peritoneal Dialysis/adverse effects , Retrospective Studies , Software
SELECTION OF CITATIONS
SEARCH DETAIL