Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 290: 120557, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38423264

ABSTRACT

BACKGROUND: Time series analysis is critical for understanding brain signals and their relationship to behavior and cognition. Cluster-based permutation tests (CBPT) are commonly used to analyze a variety of electrophysiological signals including EEG, MEG, ECoG, and sEEG data without a priori assumptions about specific temporal effects. However, two major limitations of CBPT include the inability to directly analyze experiments with multiple fixed effects and the inability to account for random effects (e.g. variability across subjects). Here, we propose a flexible multi-step hypothesis testing strategy using CBPT with Linear Mixed Effects Models (LMEs) and Generalized Linear Mixed Effects Models (GLMEs) that can be applied to a wide range of experimental designs and data types. METHODS: We first evaluate the statistical robustness of LMEs and GLMEs using simulated data distributions. Second, we apply a multi-step hypothesis testing strategy to analyze ERPs and broadband power signals extracted from human ECoG recordings collected during a simple image viewing experiment with image category and novelty as fixed effects. Third, we assess the statistical power differences between analyzing signals with CBPT using LMEs compared to CBPT using separate t-tests run on each fixed effect through simulations that emulate broadband power signals. Finally, we apply CBPT using GLMEs to high-gamma burst data to demonstrate the extension of the proposed method to the analysis of nonlinear data. RESULTS: First, we found that LMEs and GLMEs are robust statistical models. In simple simulations LMEs produced highly congruent results with other appropriately applied linear statistical models, but LMEs outperformed many linear statistical models in the analysis of "suboptimal" data and maintained power better than analyzing individual fixed effects with separate t-tests. GLMEs also performed similarly to other nonlinear statistical models. Second, in real world human ECoG data, LMEs performed at least as well as separate t-tests when applied to predefined time windows or when used in conjunction with CBPT. Additionally, fixed effects time courses extracted with CBPT using LMEs from group-level models of pseudo-populations replicated latency effects found in individual category-selective channels. Third, analysis of simulated broadband power signals demonstrated that CBPT using LMEs was superior to CBPT using separate t-tests in identifying time windows with significant fixed effects especially for small effect sizes. Lastly, the analysis of high-gamma burst data using CBPT with GLMEs produced results consistent with CBPT using LMEs applied to broadband power data. CONCLUSIONS: We propose a general approach for statistical analysis of electrophysiological data using CBPT in conjunction with LMEs and GLMEs. We demonstrate that this method is robust for experiments with multiple fixed effects and applicable to the analysis of linear and nonlinear data. Our methodology maximizes the statistical power available in a dataset across multiple experimental variables while accounting for hierarchical random effects and controlling FWER across fixed effects. This approach substantially improves power leading to better reproducibility. Additionally, CBPT using LMEs and GLMEs can be used to analyze individual channels or pseudo-population data for the comparison of functional or anatomical groups of data.


Subject(s)
Brain , Research Design , Humans , Reproducibility of Results , Brain/physiology , Models, Statistical , Linear Models
2.
bioRxiv ; 2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37034791

ABSTRACT

Background: Time series analysis is critical for understanding brain signals and their relationship to behavior and cognition. Cluster-based permutation tests (CBPT) are commonly used to analyze a variety of electrophysiological signals including EEG, MEG, ECoG, and sEEG data without a priori assumptions about specific temporal effects. However, two major limitations of CBPT include the inability to directly analyze experiments with multiple fixed effects and the inability to account for random effects (e.g. variability across subjects). Here, we propose a flexible multi-step hypothesis testing strategy using CBPT with Linear Mixed Effects Models (LMEs) and Generalized Linear Mixed Effects Models (GLMEs) that can be applied to a wide range of experimental designs and data types. Methods: We first evaluate the statistical robustness of LMEs and GLMEs using simulated data distributions. Second, we apply a multi-step hypothesis testing strategy to analyze ERPs and broadband power signals extracted from human ECoG recordings collected during a simple image viewing experiment with image category and novelty as fixed effects. Third, we assess the statistical power differences between analyzing signals with CBPT using LMEs compared to CBPT using separate t-tests run on each fixed effect through simulations that emulate broadband power signals. Finally, we apply CBPT using GLMEs to high-gamma burst data to demonstrate the extension of the proposed method to the analysis of nonlinear data. Results: First, we found that LMEs and GLMEs are robust statistical models. In simple simulations LMEs produced highly congruent results with other appropriately applied linear statistical models, but LMEs outperformed many linear statistical models in the analysis of "suboptimal" data and maintained power better than analyzing individual fixed effects with separate t-tests. GLMEs also performed similarly to other nonlinear statistical models. Second, in real world human ECoG data, LMEs performed at least as well as separate t-tests when applied to predefined time windows or when used in conjunction with CBPT. Additionally, fixed effects time courses extracted with CBPT using LMEs from group-level models of pseudo-populations replicated latency effects found in individual category-selective channels. Third, analysis of simulated broadband power signals demonstrated that CBPT using LMEs was superior to CBPT using separate t-tests in identifying time windows with significant fixed effects especially for small effect sizes. Lastly, the analysis of high-gamma burst data using CBPT with GLMEs produced results consistent with CBPT using LMEs applied to broadband power data. Conclusions: We propose a general approach for statistical analysis of electrophysiological data using CBPT in conjunction with LMEs and GLMEs. We demonstrate that this method is robust for experiments with multiple fixed effects and applicable to the analysis of linear and nonlinear data. Our methodology maximizes the statistical power available in a dataset across multiple experimental variables while accounting for hierarchical random effects and controlling FWER across fixed effects. This approach substantially improves power and accuracy leading to better reproducibility. Additionally, CBPT using LMEs and GLMEs can be used to analyze individual channels or pseudo-population data for the comparison of functional or anatomical groups of data.

3.
Front Pain Res (Lausanne) ; 4: 1072786, 2023.
Article in English | MEDLINE | ID: mdl-36937564

ABSTRACT

Objectives: This article presents a method-including hardware configuration, sampling rate, filtering settings, and other data analysis techniques-to measure evoked compound action potentials (ECAPs) during spinal cord stimulation (SCS) in humans with externalized percutaneous electrodes. The goal is to provide a robust and standardized protocol for measuring ECAPs on the non-stimulation contacts and to demonstrate how measured signals depend on hardware and processing decisions. Methods: Two participants were implanted with percutaneous leads for the treatment of chronic pain with externalized leads during a trial period for stimulation and recording. The leads were connected to a Neuralynx ATLAS system allowing us to simultaneously stimulate and record through selected electrodes. We examined different hardware settings, such as online filters and sampling rate, as well as processing techniques, such as stimulation artifact removal and offline filters, and measured the effects on the ECAPs metrics: the first negative peak (N1) time and peak-valley amplitude. Results: For accurate measurements of ECAPs, the hardware sampling rate should be least at 8 kHz and should use a high pass filter with a low cutoff frequency, such as 0.1 Hz, to eliminate baseline drift and saturation (railing). Stimulation artifact removal can use a double exponential or a second-order polynomial. The polynomial fit is 6.4 times faster on average in computation time than the double exponential, while the resulting ECAPs' N1 time and peak-valley amplitude are similar between the two. If the baseline raw measurement drifts with stimulation, a median filter with a 100-ms window or a high pass filter with an 80-Hz cutoff frequency preserves the ECAPs. Conclusions: This work is the first comprehensive analysis of hardware and processing variations on the observed ECAPs from SCS leads. It sets recommendations to properly record and process ECAPs from the non-stimulation contacts on the implantable leads.

4.
Brain Sci ; 12(1)2021 Dec 26.
Article in English | MEDLINE | ID: mdl-35053769

ABSTRACT

Central pain disorders, such as central post-stroke pain, remain clinically challenging to treat, despite many decades of pharmacological advances and the evolution of neuromodulation. For treatment refractory cases, previous studies have highlighted some benefits of cortical stimulation. Recent advances in new targets for pain and the optimization of neuromodulation encouraged our group to develop a dual cortical target approach paired with Bayesian optimization to provide a personalized treatment. Here, we present a case report of a woman who developed left-sided facial pain after multiple thalamic strokes. All previous pharmacologic and interventional treatments failed to mitigate the pain, leaving her incapacitated due to pain and medication side effects. She subsequently underwent a single burr hole for placement of motor cortex (M1) and dorsolateral prefrontal cortex (dlPFC) paddles for stimulation with externalization. By using Bayesian optimization to find optimal stimulation parameters and stimulation sites, we were able to reduce pain from an 8.5/10 to a 0/10 during a 5-day inpatient stay, with pain staying at or below a 2/10 one-month post-procedure. We found optimal treatment to be simultaneous stimulation of M1 and dlPFC without any evidence of seizure induction. In addition, we found no worsening in cognitive performance during a working memory task with dlPFC stimulation. This personalized approach using Bayesian optimization may provide a new foundation for treating central pain and other functional disorders through systematic evaluation of stimulation parameters.

5.
Front Integr Neurosci ; 10: 23, 2016.
Article in English | MEDLINE | ID: mdl-27445721

ABSTRACT

There is a growing interest in studying biological systems in natural settings, in which experimental stimuli are less artificial and behavior is less controlled. In primate vision research, free viewing of complex images has elucidated novel neural responses, and free viewing in humans has helped discover attentional and behavioral impairments in patients with neurological disorders. In order to fully interpret data collected from free viewing of complex scenes, it is critical to better understand what aspects of the stimuli guide viewing behavior. To this end, we have developed a novel viewing behavior model called a Biased Correlated Random Walk (BCRW) to describe free viewing behavior during the exploration of complex scenes in monkeys. The BCRW can predict fixation locations better than bottom-up salience. Additionally, we show that the BCRW can be used to test hypotheses regarding specific attentional mechanisms. For example, we used the BCRW to examine the source of the central bias in fixation locations. Our analyses suggest that the central bias may be caused by a natural tendency to reorient the eyes toward the center of the stimulus, rather than a photographer's bias to center salient items in a scene. Taken together these data suggest that the BCRW can be used to further our understanding of viewing behavior and attention, and could be useful in optimizing stimulus and task design.

6.
J Neurosci Methods ; 227: 121-31, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24509130

ABSTRACT

BACKGROUND: Eye tracking is an important component of many human and non-human primate behavioral experiments. As behavioral paradigms have become more complex, including unconstrained viewing of natural images, eye movements measured in these paradigms have become more variable and complex as well. Accordingly, the common practice of using acceleration, dispersion, or velocity thresholds to segment viewing behavior into periods of fixations and saccades may be insufficient. NEW METHOD: Here we propose a novel algorithm, called Cluster Fix, which uses k-means cluster analysis to take advantage of the qualitative differences between fixations and saccades. The algorithm finds natural divisions in 4 state space parameters-distance, velocity, acceleration, and angular velocity-to separate scan paths into periods of fixations and saccades. The number and size of clusters adjusts to the variability of individual scan paths. RESULTS: Cluster Fix can detect small saccades that were often indistinguishable from noisy fixations. Local analysis of fixations helped determine the transition times between fixations and saccades. COMPARISON WITH EXISTING METHODS: Because Cluster Fix detects natural divisions in the data, predefined thresholds are not needed. CONCLUSIONS: A major advantage of Cluster Fix is the ability to precisely identify the beginning and end of saccades, which is essential for studying neural activity that is modulated by or time-locked to saccades. Our data suggest that Cluster Fix is more sensitive than threshold-based algorithms but comes at the cost of an increase in computational time.


Subject(s)
Algorithms , Cluster Analysis , Fixation, Ocular/physiology , Saccades/physiology , Animals , Humans , Photic Stimulation , Reaction Time/physiology , Signal Detection, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL
...