Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(18): e202300079, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36715238

ABSTRACT

We report the formation of metal-organic cage-crosslinked polymer hydrogels. To enable crosslinking of the cages and subsequent network formation, we used homodifunctionalized poly(ethylene glycol) (PEG) chains terminally substituted with bipyridines as ligands for the Pd6 L4 corners. The encapsulation of guest molecules into supramolecular self-assembled metal-organic cage-crosslinked hydrogels, as well as ultrasound-induced disassembly of the cages with release of their cargo, is presented in addition to their characterization by nuclear magnetic resonance (NMR) techniques, rheology, and comprehensive small-angle X-ray scattering (SAXS) experiments. The constrained geometries simulating external force (CoGEF) method and barriers using a force-modified potential energy surface (FMPES) suggest that the cage-opening mechanism starts with the dissociation of one pyridine ligand at around 0.5 nN. We show the efficient sonochemical activation of the hydrogels HG3 -6 , increasing the non-covalent guest-loading of completely unmodified drugs available for release by a factor of ten in comparison to non-crosslinked, star-shaped assemblies in solution.

2.
Chemistry ; 28(17): e202103860, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-34878679

ABSTRACT

The design and manipulation of (multi)functional materials at the nanoscale holds the promise of fuelling tomorrow's major technological advances. In the realm of macromolecular nanosystems, the incorporation of force-responsive groups, so called mechanophores, has resulted in unprecedented access to responsive behaviours and enabled sophisticated functions of the resulting structures and advanced materials. Among the diverse force-activated motifs, the on-demand release or activation of compounds, such as catalysts, drugs, or monomers for self-healing, are sought-after since they enable triggering pristine small molecule function from macromolecular frameworks. Here, we highlight examples of molecular cargo release systems from polymer-based architectures in solution by means of sonochemical activation by ultrasound (ultrasound-induced mechanochemistry). Important design concepts of these advanced materials are discussed, as well as their syntheses and applications.


Subject(s)
Mechanical Phenomena , Polymers , Catalysis , Macromolecular Substances , Polymers/chemistry , Ultrasonography
3.
Angew Chem Int Ed Engl ; 60(24): 13626-13630, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33729649

ABSTRACT

Supramolecular coordination cages show a wide range of useful properties including, but not limited to, complex molecular machine-like operations, confined space catalysis, and rich host-guest chemistries. Here we report the uptake and release of non-covalently encapsulated, pharmaceutically-active cargo from an octahedral Pd cage bearing polymer chains on each vertex. Six poly(ethylene glycol)-decorated bipyridine ligands are used to assemble an octahedral PdII6 (TPT)4 cage. The supramolecular container encapsulates progesterone and ibuprofen within its hydrophobic nanocavity and is activated by shear force produced by ultrasonication in aqueous solution entailing complete cargo release upon rupture, as shown by NMR and GPC analyses.

SELECTION OF CITATIONS
SEARCH DETAIL
...