Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nano Lett ; 23(7): 2476-2482, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36972710

ABSTRACT

Step edges of topological crystalline insulators can be viewed as predecessors of higher-order topology, as they embody one-dimensional edge channels embedded in an effective three-dimensional electronic vacuum emanating from the topological crystalline insulator. Using scanning tunneling microscopy and spectroscopy, we investigate the behavior of such edge channels in Pb1-xSnxSe under doping. Once the energy position of the step edge is brought close to the Fermi level, we observe the opening of a correlation gap. The experimental results are rationalized in terms of interaction effects which are enhanced since the electronic density is collapsed to a one-dimensional channel. This constitutes a unique system to study how topology and many-body electronic effects intertwine, which we model theoretically through a Hartree-Fock analysis.

2.
Proc Natl Acad Sci U S A ; 119(42): e2210589119, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36215505

ABSTRACT

Spin chains proximitized with superconducting condensates have emerged as one of the most promising platforms for the realization of Majorana modes. Here, we craft diluted spin chains atom by atom following a seminal theoretical proposal suggesting indirect coupling mechanisms as a viable route to trigger topological superconductivity. Starting from single adatoms hosting deep Shiba states, we use the highly anisotropic Fermi surface of the substrate to create spin chains characterized by different magnetic configurations along distinct crystallographic directions. By scrutinizing a large set of parameters we reveal the ubiquitous emergence of boundary modes. Although mimicking signatures of Majorana modes, the end modes are identified as topologically trivial Shiba states. Our work demonstrates that zero-energy modes in spin chains proximitized to superconductors are not necessarily a link to Majorana modes while simultaneously identifying other experimental platforms, driving mechanisms, and test protocols for the determination of topologically nontrivial superconducting phases.

3.
J Environ Manage ; 319: 115707, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35839650

ABSTRACT

Pyrolysis of the waste organic fraction is expected to be a central element to meet the primary energy demand in future: it increases the impact of renewable energy sources on the power generation sector and allows the amount of waste to be reduced, putting an end to landfills. In the present study, kinetic studies on the pyrolysis of biomass wastes are carried out. Two kinds of industrial organic waste are investigated: brewery spent grain (BSG) and medium-density fiberboard (MDF). The main target of this work is to provide a global equation for the one-step pyrolysis reaction of the investigated materials in an argon atmosphere using isoconversional methods. The conducted analysis allowed to estimate the activation energy as 225.4-253.6 kJ/mol for BSG and 197.9-216.7 kJ/mol for MDF. For both materials nth order reaction was proposed with reaction order of 7.69-8.70 for BSG and 6.32-6.55 for MDF. The developed equation allowed to simulate the theoretical curves of thermal conversion. These curves indicated the highest conversion at the temperature of the degradation of dominant component, which was experimentally verified. By this method, a one-step kinetic model is derived, which can be applied for the reaction kinetics in the CFD modelling of, e.g., pyrolysis and gasification processes.


Subject(s)
Industrial Waste , Pyrolysis , Biomass , Kinetics , Thermogravimetry
4.
Sci Adv ; 8(4): eabi7291, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35080983

ABSTRACT

High-energy resolution spectroscopic studies of quantum magnets proved extremely valuable in accessing magnetodynamics quantities, such as energy barriers, magnetic interactions, and lifetime of excited states. Here, we investigate a previously unexplored flavor of low-energy spin excitations for quantum spins coupled to an electron bath. In sharp contrast to the usual tunneling signature of two steps symmetrically centered around the Fermi level, we find a single step in the conductance. Combining time-dependent and many-body perturbation theories, magnetic field-dependent tunneling spectra are explained as the result of an interplay between weak magnetic anisotropy energy, magnetic interactions, and Stoner-like electron-hole excitations that are strongly dependent on the magnetic states of the nanostructures. The results are rationalized in terms of a noncollinear magnetic ground state and the dominance of ferro- and antiferromagnetic interactions. The atomically crafted nanomagnets offer an appealing model for the exploration of electrically pumped spin systems.

5.
Nat Commun ; 12(1): 6722, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34795233

ABSTRACT

Interfacing magnetism with superconducting condensates is rapidly emerging as a viable route for the development of innovative quantum technologies. In this context, the development of rational design strategies to controllably tune the interaction between magnetic moments is crucial. Here we address this problem demonstrating the possibility of tuning the interaction between local spins coupled through a superconducting condensate with atomic scale precision. By using Cr atoms coupled to superconducting Nb, we use atomic manipulation techniques to precisely control the relative distance between local spins along distinct crystallographic directions while simultaneously sensing their coupling by scanning tunneling spectroscopy. Our results reveal the existence of highly anisotropic interactions, lasting up to very long distances, demonstrating the possibility of crossing a quantum phase transition by acting on the direction and interatomic distance between spins. The high tunability provides novel opportunities for the realization of topological superconductivity and the rational design of magneto-superconducting interfaces.

6.
Adv Mater ; 33(32): e2102267, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34216404

ABSTRACT

Heterostructures formed from interfaces between materials with complementary properties often display unconventional physics. Of especial interest are heterostructures formed with ferroelectric materials. These are mostly formed by combining thin layers in vertical stacks. Here the first in situ molecular beam epitaxial growth and scanning tunneling microscopy characterization of atomically sharp lateral heterostructures between a ferroelectric SnTe monolayer and a paraelectric PbTe monolayer are reported. The bias voltage dependence of the apparent heights of SnTe and PbTe monolayers, which are closely related to the type-II band alignment of the heterostructure, is investigated. Remarkably, it is discovered that the ferroelectric domains in the SnTe surrounding a PbTe core form either clockwise or counterclockwise vortex-oriented quadrant configurations. In addition, when there is a finite angle between the polarization and the interface, the perpendicular component of the polarization always points from SnTe to PbTe. Supported by first-principles calculation, the mechanism of vortex formation and preferred polarization direction is identified in the interaction between the polarization, the space charge, and the strain effect at the horizontal heterointerface. The studies bring the application of 2D group-IV monochalcogenides on in-plane ferroelectric heterostructures a step closer.

7.
Nano Lett ; 21(7): 2758-2765, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33792332

ABSTRACT

Artificially engineered topological superconductivity has emerged as a viable route to create Majorana modes. In this context, proximity-induced superconductivity in materials with a sizable spin-orbit coupling has been intensively investigated in recent years. Although there is convincing evidence that superconductivity may indeed be induced, it has been difficult to elucidate its topological nature. Here, we engineer an artificial topological superconductor by progressively introducing superconductivity (Nb), strong spin-orbital coupling (Pt), and topological states (Bi2Te3). Through spectroscopic imaging of superconducting vortices within the bare s-wave superconducting Nb and within proximitized Pt and Bi2Te3 layers, we detect the emergence of a zero-bias peak that is directly linked to the presence of topological surface states. Our results are rationalized in terms of competing energy trends which are found to impose an upper limit to the size of the minigap separating Majorana and trivial modes, its size being ultimately linked to fundamental materials properties.

8.
Nat Commun ; 12(1): 1108, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33597519

ABSTRACT

Local spins coupled to superconductors give rise to several emerging phenomena directly linked to the competition between Cooper pair formation and magnetic exchange. These effects are generally scrutinized using a spectroscopic approach which relies on detecting the in-gap bound modes arising from Cooper pair breaking, the so-called Yu-Shiba-Rusinov (YSR) states. However, the impact of local magnetic impurities on the superconducting order parameter remains largely unexplored. Here, we use scanning Josephson spectroscopy to directly visualize the effect of magnetic perturbations on Cooper pair tunneling between superconducting electrodes at the atomic scale. By increasing the magnetic impurity orbital occupation by adding one electron at a time, we reveal the existence of a direct correlation between Josephson supercurrent suppression and YSR states. Moreover, in the metallic regime, we detect zero bias anomalies which break the existing framework based on competing Kondo and Cooper pair singlet formation mechanisms. Based on first-principle calculations, these results are rationalized in terms of unconventional spin-excitations induced by the finite magnetic anisotropy energy. Our findings have far reaching implications for phenomena that rely on the interplay between quantum spins and superconductivity.

9.
Nano Lett ; 20(9): 6590-6597, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32809837

ABSTRACT

Two-dimensional (2D) van der Waals ferroelectrics provide an unprecedented architectural freedom for the creation of artificial multiferroics and nonvolatile electronic devices based on vertical and coplanar heterojunctions of 2D ferroic materials. Nevertheless, controlled microscopic manipulation of ferroelectric domains is still rare in monolayer-thick 2D ferroelectrics with in-plane polarization. Here we report the discovery of robust ferroelectricity with a critical temperature close to 400 K in SnSe monolayer plates grown on graphene and the demonstration of controlled room-temperature ferroelectric domain manipulation by applying appropriate bias voltage pulses to the tip of a scanning tunneling microscope (STM). This study shows that STM is a powerful tool for detecting and manipulating the microscopic domain structures in 2D ferroelectric monolayers, which are difficult for conventional approaches such as piezoresponse force microscopy, thus facilitating the hunt for other 2D ferroelectric monolayers with in-plane polarization with important technological applications.

10.
Nat Commun ; 11(1): 3507, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32665572

ABSTRACT

It has recently been proposed that combining chirality with topological band theory results in a totally new class of fermions. Understanding how these unconventional quasiparticles propagate and interact remains largely unexplored so far. Here, we use scanning tunneling microscopy to visualize the electronic properties of the prototypical chiral topological semimetal PdGa. We reveal chiral quantum interference patterns of opposite spiraling directions for the two PdGa enantiomers, a direct manifestation of the change of sign of their Chern number. Additionally, we demonstrate that PdGa remains topologically non-trivial over a large energy range, experimentally detecting Fermi arcs in an energy window of more than 1.6 eV that is symmetrically centered around the Fermi level. These results are a consequence of the deep connection between chirality in real and reciprocal space in this class of materials, and, thereby, establish PdGa as an ideal topological chiral semimetal.

SELECTION OF CITATIONS
SEARCH DETAIL
...