Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37688198

ABSTRACT

The surface modification of cellulose nanofibers (CNFs) using a 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)/sodium bromide (NaBr)/sodium hypochlorite (NaClO) system was successful in improving their hydrophilicity. Following that, we fabricated hydrogels containing carboxylated cellulose nanofibers (c-CNFs) and loaded them with polyhexamethylene biguanide (PHMB) using a physical crosslinking method, aiming for efficient antimicrobial uses. The morphological and physicochemical properties of all hydrogel formulations were characterized, and the results revealed that the 7% c-CNFs-2 h loaded with PHMB formulation exhibited desirable characteristics such as regular shape, high porosity, good mechanical properties, suitable gel content, and a good maximum swelling degree. The successful integration of PHMB into the c-CNF matrix was confirmed by FTIR analysis. Furthermore, the 7% c-CNFs-2 h loaded with the PHMB formulation demonstrated PHMB contents exceeding 80% and exhibited a prolonged drug release pattern for up to 3 days. Moreover, this formulation displayed antibacterial activity against S. aureus and P. aeruginosa. In conclusion, the novel approach of c-CNF hydrogels loaded with PHMB through physical crosslinking shows promise as a potential system for prolonged drug release in topical drug delivery while also exhibiting excellent antibacterial activity.

2.
J Appl Oral Sci ; 31: e20230006, 2023.
Article in English | MEDLINE | ID: mdl-37283330

ABSTRACT

OBJECTIVE: To explore the potential for development of Thai propolis extract as a pulp capping agent to suppress pulpal inflammation from dental pulp infections. This study aimed to examine the anti-inflammatory effect of the propolis extract on the arachidonic acid pathway, activated by interleukin (IL)-1ß, in cultured human dental pulp cells. METHODOLOGY: Dental pulp cells, isolated from three freshly extracted third molars, were first characterized for their mesenchymal origin and treated with 10 ng/ml of IL-1ß in the presence or absence of non-toxic concentrations of the extract from 0.08 to 1.25 mg/ml, as determined by the PrestoBlue cytotoxic assay. Total RNA was harvested and analyzed for mRNA expressions of 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2). Western blot hybridization was performed to investigate COX-2 protein expression. Culture supernatants were assayed for released prostaglandin E2 levels. Immunofluorescence was conducted to determine involvement of nuclear factor-kappaB (NF-kB) in the inhibitory effect of the extract. RESULTS: Stimulation of the pulp cells with IL-1ß resulted in the activation of arachidonic acid metabolism via COX-2, but not 5-LOX. Incubation with various non-toxic concentrations of the propolis extract significantly inhibited upregulated COX-2 mRNA and protein expressions upon treatment with IL-1ß (p<0.05), resulting in a significant decrease in elevated PGE2 levels (p<0.05). Nuclear translocation of the p50 and the p65 subunits of NF-kB upon treatment with IL-1ß was also blocked by incubation with the extract. CONCLUSIONS: Upregulated COX-2 expression and enhanced PGE2 synthesis upon treatment with IL-1ß in human dental pulp cells were suppressed by incubation with non-toxic doses of Thai propolis extract via involvement of the NF-kB activation. This extract could be therapeutically used as a pulp capping material due to its anti-inflammatory properties.


Subject(s)
Anti-Inflammatory Agents , Dental Pulp , Propolis , Humans , Anti-Inflammatory Agents/pharmacology , Arachidonic Acid/pharmacology , Cells, Cultured , Cyclooxygenase 2/metabolism , Dental Pulp/cytology , Dental Pulp/drug effects , Dinoprostone/metabolism , NF-kappa B , Plant Extracts , Propolis/pharmacology , RNA, Messenger/metabolism
3.
J. appl. oral sci ; 31: e20230006, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1440417

ABSTRACT

Abstract Objective To explore the potential for development of Thai propolis extract as a pulp capping agent to suppress pulpal inflammation from dental pulp infections. This study aimed to examine the anti-inflammatory effect of the propolis extract on the arachidonic acid pathway, activated by interleukin (IL)-1β, in cultured human dental pulp cells. Methodology Dental pulp cells, isolated from three freshly extracted third molars, were first characterized for their mesenchymal origin and treated with 10 ng/ml of IL-1β in the presence or absence of non-toxic concentrations of the extract from 0.08 to 1.25 mg/ml, as determined by the PrestoBlue cytotoxic assay. Total RNA was harvested and analyzed for mRNA expressions of 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2). Western blot hybridization was performed to investigate COX-2 protein expression. Culture supernatants were assayed for released prostaglandin E2 levels. Immunofluorescence was conducted to determine involvement of nuclear factor-kappaB (NF-kB) in the inhibitory effect of the extract. Results Stimulation of the pulp cells with IL-1β resulted in the activation of arachidonic acid metabolism via COX-2, but not 5-LOX. Incubation with various non-toxic concentrations of the propolis extract significantly inhibited upregulated COX-2 mRNA and protein expressions upon treatment with IL-1β (p<0.05), resulting in a significant decrease in elevated PGE2 levels (p<0.05). Nuclear translocation of the p50 and the p65 subunits of NF-kB upon treatment with IL-1β was also blocked by incubation with the extract. Conclusions Upregulated COX-2 expression and enhanced PGE2 synthesis upon treatment with IL-1β in human dental pulp cells were suppressed by incubation with non-toxic doses of Thai propolis extract via involvement of the NF-kB activation. This extract could be therapeutically used as a pulp capping material due to its anti-inflammatory properties.

4.
Gels ; 8(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36547291

ABSTRACT

Water hyacinth is an aquatic weed species that grows rapidly. In particular, it causes negative impacts on the aquatic environment and ecological system. However, water hyacinth is rich in cellulose, which is a biodegradable material. This study isolated cellulose from the water hyacinth petiole. It was then used to fabricate composite hydrogels made with water hyacinth cellulose (C), alginate (A), and pectin (P) at different mass ratios. The selected water hyacinth cellulose-based hydrogel was incorporated with quercetin, and its properties were evaluated. The FTIR and XRD of extracted water hyacinth cellulose indicated specific characteristics of cellulose. The hydrogel which consisted of the water hyacinth cellulose alginate characterized pectin: pectin had a mass ratio of 2.5:0.5:0.5 (C2.5A0.5P0.5), showed good puncture strength (2.16 ± 0.14 N/mm2), the highest swelling index (173.28 ± 4.94%), and gel content (39.35 ± 0.53%). The FTIR showed an interaction between water hyacinth cellulose and quercetin with hydrogen bonding. The C2.5A0.5P0.5 hydrogel containing quercetin possessed 92.07 ± 5.77% of quercetin-loaded efficiency. It also exhibited good antibacterial activity against S. aureus and P. aeruginosa due to hydrogel properties, and no toxicity to human cells. This study indicated that water hyacinth cellulose-composited hydrogel is suitable for topical antibacterial applications.

5.
Membranes (Basel) ; 12(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36135844

ABSTRACT

Composite bacterial cellulose (BC) based hydrogel with alginate (A) or pectin (P) or alginate and pectin was fabricated via a physical crosslinking technique using calcium chloride (CaCl2) solution and incorporated with polyhexamethylene biguanide (PHMB) as an effective antimicrobial drug by immersion method. After that, the physicochemical properties of all hydrogel formulations were characterized. The result showed that the formulations with PHMB performed better physicochemical properties than the hydrogel without PHMB. Fourier transform infrared spectroscopy (FT-IR) showed the interaction between PHMB and the carboxylic group of alginate and pectin. BC/A-PHMB hydrogel performed suitable mechanical strength, fluid uptake ability, water retention property, drug content, high integrity value, and maximum swelling degree. Moreover, in vitro cell viability of BC/A-PHMB hydrogel revealed high biocompatibility with human keratinocyte cell line (HaCaT) and demonstrated prolong released of PHMB in Tris-HCl buffer pH 7.4, while rapid release in phosphate buffer saline pH 7.4. BC/A-PHMB hydrogel demonstrated good anti-bacterial activity against S. aureus and P. aeruginosa. In conclusion, BC/A-PHMB hydrogel could be a potential dual crosslinked ion-based hydrogel for wound dressing with anti-bacterial activity.

6.
Polymers (Basel) ; 14(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35566905

ABSTRACT

Polymeric nanoparticles are one method to modify the drug release of small hydrophilic molecules. In this study, clindamycin HCl was used as a model drug loaded in carboxymethyl chitosan nanoparticles cross-linked with Ca2+ ions (CMCS-Ca2+). The ultrasonication with experimental design was used to produce CMCS-Ca2+ nanoparticles loading clindamycin HCl. The model showed that the size of nanoparticles decreased when amplitude and time increased. The nanoparticle size of 318.40 ± 7.56 nm, decreased significantly from 543.63 ± 55.07 nm (p < 0.05), was obtained from 75% of amplitude and 180 s of time, which was one of the optimal conditions. The clindamycin loading content in this condition was 34.68 ± 2.54%. The drug content in nanoparticles showed an inverse relationship with the size of the nanoparticles. The sodium carboxymethylcellulose film loading clindamycin HCl nanoparticles exhibited extended release with 69.88 ± 2.03% drug release at 60 min and a gradual increase to 94.99 ± 4.70% at 24 h, and demonstrated good antibacterial activity against S. aureus and C. acne with 40.72 ± 1.23 and 48.70 ± 1.99 mm of the zone of inhibition at 24 h, respectively. Thus, CMCS-Ca2+ nanoparticles produced by the ultrasound-assisted technique could be a potential delivery system to modify the drug release of small hydrophilic antibiotics.

7.
Arch Oral Biol ; 140: 105466, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35640321

ABSTRACT

OBJECTIVE: Implication of human caspase-4 in periodontitis and in sensing periodontal pathogens by gingival epithelial cells (GECs) is unclear. This study aimed to determine caspase-4 and interleukin (IL)-18 expressions in gingival tissues affected with periodontitis and to investigate caspase-4 involvement in mediating innate immune responses in GECs. DESIGN: Ex vivo, caspase-4 and IL-18 expressions in gingival biopsies, obtained from healthy participants with periodontitis or clinically healthy gingiva (N = 20 each), were determined by immunohistochemistry. In vitro, caspase-4 activation in cultured GECs stimulated with Porphyromonas gingivalis or Fusobacterium nucleatum was analyzed by immunoblotting. mRNA expressions of human ß-defensin-2 (hBD-2), IL-8, and IL-18 in stimulated GECs in the presence or absence of a caspase-4 inhibitor were assayed by RT-qPCR. RESULTS: Ex vivo, compared with healthy gingival epithelium, the epithelium affected with periodontitis displayed a significant decrease in caspase-4 expression (P = 0.015), whereas IL-18 expression was significantly increased (P = 0.012). Moreover, the expression of caspase-4, but not IL-18, was found to be a predictor of periodontitis (P = 0.007). In vitro, caspase-4 was activated in cultured GECs challenged with P. gingivalis, but not F. nucleatum. mRNA upregulations of hBD-2, IL-8, and IL-18 upon P. gingivalis stimulation were significantly reduced when caspase-4 was inhibited (P < 0.05), whereas the inhibitor failed to suppress those inductions by F. nucleatum. CONCLUSIONS: Caspase-4 expression is diminished in the epithelium affected with periodontitis while that of IL-18 is enhanced. Caspase-4 activation in P. gingivalis-infected GECs upregulates the three innate immune effector molecules, suggesting a possible sensing mechanism of caspase-4 in GECs in periodontal disease pathogenesis.


Subject(s)
Bacteroidaceae Infections , Caspases, Initiator , Gingiva , Periodontitis , Porphyromonas gingivalis , Bacteroidaceae Infections/enzymology , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/pathology , Caspases, Initiator/biosynthesis , Cells, Cultured , Epithelium/enzymology , Epithelium/microbiology , Epithelium/pathology , Gingiva/enzymology , Gingiva/microbiology , Gingiva/pathology , Humans , Interleukin-18/biosynthesis , Interleukin-8/biosynthesis , Periodontitis/enzymology , Periodontitis/microbiology , Periodontitis/pathology , Porphyromonas gingivalis/metabolism , RNA, Messenger/metabolism
8.
J Synchrotron Radiat ; 29(Pt 2): 496-504, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35254314

ABSTRACT

Although the use of fluoride for root caries control is reported to be effective, the mechanism of maintaining hydroxyapatite is still unclear. This study elucidates the roles of fluoride in the recrystallization of hydroxyapatite, and the impact of calcium to maintain the abundance of hydroxyapatite on acid-challenged root dentin with a novel approach - using synchrotron radiation. Root dentin samples obtained from 40 extracted human premolars were subjected to pH challenge in combination with fluoride treatment. The effect of fluoride on hydroxyapatite regeneration on the root was investigated by using a range of fluoride concentrations (1000-5000 p.p.m.) and the EDTA-chelation technique in vitro. Synchrotron radiation X-ray micro-computed tomography and X-ray absorption spectroscopy were utilized to characterize the chemical composition of calcium species on the surface of prepared samples. The percentage of hydroxyapatite and the relative abundance of calcium species were subsequently compared between groups. The absence of calcium or fluoride prevented the complete remineralization of hydroxyapatite on the surface of early root caries. Different concentrations of fluoride exposure did not affect the relative abundance of hydroxyapatite. Sufficient potency of 1000 p.p.m. fluoride solution in promoting hydroxyapatite structural recrystallization on the root was demonstrated. Both calcium and fluoride ions are prerequisites in a caries-prone environment. Orchestration of F- and Ca2+ is required for structural homeostasis of root dentin during acid attack. Sustainable levels of F- and Ca2+ might thus be a strict requirement in the saliva of the population prone to root caries. Fluoride and calcium contribute to structural homeostasis of tooth root, highlighting that routine fluoride use in combination with calcium replenishment is recommended for maintaining dental health. This study also demonstrates that utilization of synchrotron radiation could provide a promising experimental platform for laboratory investigation especially in the dental material research field.


Subject(s)
Fluorides , Tooth Remineralization , Calcium/analysis , Dentin , Durapatite/analysis , Durapatite/pharmacology , Fluorides/analysis , Fluorides/chemistry , Fluorides/pharmacology , Humans , Hydrogen-Ion Concentration , Synchrotrons , Tooth Remineralization/methods , X-Ray Microtomography
9.
J Periodontol ; 93(12): 1940-1950, 2022 12.
Article in English | MEDLINE | ID: mdl-35100435

ABSTRACT

BACKGROUND: The gingival epithelium protects periodontal tissues and the alveolar bone by maintaining a steady state of regulated inflammatory surveillance, also known as healthy homeostasis. Accordingly, the repertoire of receptors present within the gingival epithelium showcases its ability to recognize microbial colonization and contribute to bacterial sensing. Macrophage migration inhibitory factor (MIF) is one of many cytokines that are expressed in this protective state and is involved in neutrophil regulation. However, its role in the maintenance of healthy gingival tissue has not been described. METHODS: Gingival tissues from wild-type (WT) and Mif knock-out (KO) mice were stained for neutrophils and three key neutrophil chemoattractants: MIF, Gro-α/CXCL1, and Gro-ß/CXCL2 in the junctional epithelium (JE). In addition, gene silencing studies were performed using gingival epithelial cells (GECs) to examine the role of MIF on transcription of key bacterial recognition receptors Toll-like receptors (TLR)-1, -2, -4, -6, -9 and interleukin-1 receptors (IL-1R1 and IL-1R2) in response to oral bacterial stimulation. RESULTS: WT murine gingival tissues demonstrated high expression of MIF in the JE. In Mif KO mice, despite the significant reduction of Gro-α/CXCL1 and Gro-ß/CXCL2, there was a slight increase in neutrophils. Gene silencing experiments showed that MIF down-regulated the mRNA expression of TLR4, IL-1R1, and IL-1R2 in GEC, in addition to decreasing secreted IL-8/CXCL8 in response to bacteria. CONCLUSIONS: MIF regulates the expression of TLR4, IL-1Rs, and IL-8/CXCL8, components that are all involved in maintaining oral health. Our data demonstrate that MIF is a significant contributor to the maintenance of healthy oral homeostasis.


Subject(s)
Epithelial Cells , Immunity, Innate , Macrophage Migration-Inhibitory Factors , Animals , Mice , Interleukin-8 , Mice, Knockout , Receptors, Interleukin-1 Type II , Toll-Like Receptor 4 , Gingiva/cytology
10.
Molecules ; 26(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919710

ABSTRACT

In recent years, instead of the use of chemical substances, alternative substances, especially plant extracts, have been characterized for an active packaging of antibacterial elements. In this study, the peels of mangosteen (Garcinia mangostana), rambutan (Nephelium lappaceum), and mango (Mangifera indica) were extracted to obtain bioactive compound by microwave-assisted extraction (MAE) and maceration with water, ethanol 95% and water-ethanol (40:60%). All extracts contained phenolics and flavonoids. However, mangosteen peel extracted by MAE and maceration with water/ethanol (MT-MAE-W/E and MT-Ma-W/E, respectively) contained higher phenolic and flavonoid contents, and exhibited greater antibacterial activity against Staphylococcus aureus and Escherichia coli. Thus, both extracts were analyzed by liquid chromatograph-mass spectrometer (LC-MS) analysis, α-mangostin conferring antibacterial property was found in both extracts. The MT-MAE-W/E and MT-Ma-W/E films exhibited 30.22 ± 2.14 and 30.60 ± 2.83 mm of growth inhibition zones against S. aureus and 26.50 ± 1.60 and 26.93 ± 3.92 mm of growth inhibition zones against E. coli. These clear zones were wider than its crude extract approximately 3 times, possibly because the film formulation enhanced antibacterial activity with sustained release of active compound. Thus, the mangosteen extracts have potential to be used as an antibacterial compound in active packaging.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fruit/chemistry , Hypromellose Derivatives/chemistry , Plant Extracts/chemistry , Product Packaging , Escherichia coli/drug effects , Flavonoids/analysis , Garcinia mangostana/chemistry , Mangifera/chemistry , Mass Spectrometry , Microbial Sensitivity Tests , Microwaves , Phenols/analysis , Quercetin/chemistry , Sapindaceae/chemistry , Staphylococcus aureus/drug effects , Xanthones/analysis , Xanthones/chemistry
11.
Periodontol 2000 ; 86(1): 188-200, 2021 06.
Article in English | MEDLINE | ID: mdl-33690934

ABSTRACT

Years of coevolution with resident microbes has made them an essential component of health. Yet, little is known about oral commensal bacteria's contribution to and role in the maintenance of oral health and homeostasis. Commensal bacteria are speculated to play a host protective role in the maintenance of health. In this review, we describe and provide examples of the coordinate regulation that occurs between oral commensal bacteria and the host innate immune response to modulate and maintain oral homeostasis.


Subject(s)
Immunity, Innate , Microbiota , Epithelium , Homeostasis , Humans , Periodontium
12.
Odontology ; 109(1): 124-138, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32495193

ABSTRACT

Glass ionomer cement (GIC) is a restorative dental material capable of promoting mineral deposition on surrounding tooth substrates. However, it is unclear as to whether demineralization and remineralization due to an oral pH change of the tooth affect the dissolution pattern of tooth crown and root differently. It also remains to be elucidated how GIC alters superficial chemical compositions of tooth crown structurally known as enamel, in relation to the root. In this study, we investigated an effect of pH challenge on chemical compositional change of tooth crown and root, as well as the contribution of GIC restorations on a shift of elemental abundance on tooth crown and root. Our findings demonstrated that an exposure to a pH cycling resulted in a drastic change of elemental profile of the root, but not the crown. Modification of superficial elemental ingredients of GIC-restored cavities located on different anatomical part of the tooth was found after an acid attack. Notably, a differential induction of chemical compositional shift was dependent on the type of GIC used and the location of restored GIC. Our study highlights a susceptibility of root portion to acid-induced elemental dissolution, and that GIC use might be implicated in the delayed dissolution rate of the tooth structure.


Subject(s)
Dental Enamel , Glass Ionomer Cements , Acrylic Resins , Composite Resins , Dental Materials , Dental Restoration, Permanent , Materials Testing , Silicon Dioxide , Tooth Remineralization
13.
Dent Traumatol ; 37(1): 123-130, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33185962

ABSTRACT

BACKGROUND/AIM: Success of tooth replantation depends on the quality and quantity of periodontal ligament (PDL) cells. The aims of this study were to evaluate Thai propolis extract as a storage medium for maintaining PDL cell viability and preserving gene expressions in PDL tissues. MATERIALS AND METHODS: PDL cells from human premolars were tested for cytotoxicity of the extract by PrestoBlue assay to determine a non-toxic concentration. Subsequently, 96 freshly extracted premolars were allocated into different treatment groups. Control groups were freshly extracted premolars or they had been stored dry for 12 hours. Experimental avulsed teeth were created by leaving them air-dried for 30 minutes immediately after extraction, then they were immersed in Thai propolis extract, HBSS or milk for 3, 6 and 12 hours. After tooth storage, the remaining PDL cells were determined for their cell viability. RNA isolated from PDL tissues of three premolars treated similarly was analysed for periostin and S100A4 expressions using RT-qPCR. RESULTS: Thai propolis extract at 0.625 mg mL-1 promoted the greatest PDL cell viability. Tooth storage in 0.625 mg mL-1 Thai propolis extract, HBSS or milk showed no difference in maintaining cell viability. Periostin mRNA level was preserved by Thai propolis extract. Expression of S100A4 mRNA in PDL tissues stored in all tested media was dampened. CONCLUSIONS: PDL cells from mock avulsed teeth stored in 0.625 mg mL-1 Thai propolis extract for 3, 6 and 12 hours remained viable and the expression of periostin was preserved. This study suggests this extract as an alternative for a tooth storage medium for up to 12 hours. However, transporting an avulsed tooth in a storage medium for extended extra-oral time might affect the PDL cell phenotypes.


Subject(s)
Organ Preservation Solutions , Propolis , Tooth Avulsion , Animals , Cell Survival , Gene Expression , Humans , Isotonic Solutions , Milk , Periodontal Ligament , Plant Extracts/pharmacology , Propolis/pharmacology , Thailand
14.
Polymers (Basel) ; 12(5)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349233

ABSTRACT

In this study, we aimed to develop a low-mexthoxyl pectin (LMP) from mango peel pectin through a de-esterification method for use as a film forming agent. The prepared de-esterified pectin (DP) was compared to commercial LMP (cLMP) which possessed a 29% degree of esterification (DE). Mango peel pectin was extracted from ripe Nam Dokmai mango peel using the microwave-assisted extraction method. Pectin derived from the mango peel was classified as a high mexthoxyl pectin (79% DE) with 75% of galacturonic acid (GalA) content. A de-esterification experiment was designed by central composite design to plot the surface response curve. Our prepared DP was classified as LMP (DE 29.40%) with 69% GalA. In addition, the Fourier-transform infrared spectrophotometer (FTIR) spectra of the DP were similar to cLMP and the pectin backbone was not changed by the de-esterification process. Strikingly, the cLMP and DP films showed non-significant differences between their physical properties (p > 0.05) with respect to the puncture strength (13.72 N/mm2 and 11.13 N/mm2 for the cLMP and DP films, respectively), percent elongation (2.75% and 2.52% for the cLMP and DP films, respectively), and Young's modulus (67.69 N/mm2 and 61.79 N/mm2 for the cLMP and DP films, respectively). The de-esterified pectin containing clindamycin HCl (DPC) and low-methoxyl pectin containing clindamycin HCl (cLMPC) films demonstrated 93.47% and 98.79% of drug loading content. The mechanical properties of the cLMPC and DPC films were improved possibly due to their crystal structures and a plasticizing effect of clindamycin HCl loaded into the films. The DPC film exhibited a drug release profile similar to that of the cLMPC film. Our anti-bacterial test of the films found that the cLMPC film showed 41.11 and 76.30 mm inhibitory clear zones against Staphylococcus aureus and Cutibacterium acnes, respectively. The DPC film showed 40.78 and 74.04 mm clear zones against S. aureus and C. acnes, respectively. The antibacterial activities of the cLMPC and DPC films were not significantly different from a commercial clindamycin solution. The results of this study suggest that mango peel pectin can be de-esterified and utilized as an LMP and the de-esterified pectin has the potential for use as a film forming agent, similar to cLMP. In addition, the remarkable use of de-esterified mango peel pectin to prepare films, as shown by our study, holds a great promise as an alternative material for anti-bacterial purposes.

15.
BMC Oral Health ; 20(1): 91, 2020 03 29.
Article in English | MEDLINE | ID: mdl-32223750

ABSTRACT

BACKGROUND: Pulpal inflammation is known to be mediated by multiple signaling pathways. However, whether melatonin plays regulatory roles in pulpal inflammation remains unclear. This study aimed at elucidating an in situ expression of melatonin and its receptors in human pulpal tissues, and the contribution of melatonin on the antagonism of lipopolysaccharide (LPS)-infected pulpal fibroblasts. METHODS: Melatonin expression in pulpal tissues harvested from healthy teeth was investigated by immunohistochemical staining. Its receptors, melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2), were also immunostained in pulpal tissues isolated from healthy teeth and inflamed teeth diagnosed with irreversible pulpitis. Morphometric analysis was subsequently performed. After LPS infection of cultured pulpal fibroblasts, cyclo-oxygenase (COX) and interleukin-1 ß (IL-1 ß) transcripts were examined by using reverse transcription-polymerase chain reaction (RT-PCR). Analysis of mRNA expression was performed to investigate an antagonism of LPS stimulation by melatonin via COX and IL-1 ß induction. Mann-Whitney U test and One-way ANOVA were used for statistical analysis to determine a significance level. RESULTS: Melatonin was expressed in healthy pulpal tissue within the odontoblastic zone, cell-rich zone, and in the pulpal connective tissue. Furthermore, in health, strong MT1 and MT2 expression was distributed similarly in all 3 pulpal zones. In contrast, during disease, expression of MT2 was reduced in inflamed pulpal tissues (P-value< 0.001), but not MT1 (P-value = 0.559). Co-culturing of melatonin with LPS resulted in the reduction of COX-2 and IL-1 ß expression in primary pulpal fibroblasts, indicating that melatonin may play an antagonistic role to LPS infection in pulpal fibroblasts. CONCLUSIONS: Human dental pulp abundantly expressed melatonin and its receptors MT1 and MT2 in the odontoblastic layers and pulpal connective tissue layers. Melatonin exerted antagonistic activity against LPS-mediated COX-2 and IL-1 ß induction in pulpal fibroblasts, suggesting its therapeutic potential for pulpal inflammation and a possible role of pulpal melatonin in an immunomodulation via functional melatonin receptors expressed in dental pulp.


Subject(s)
Fibroblasts/metabolism , Lipopolysaccharides/adverse effects , Melatonin/pharmacology , Pulpitis , Humans , Inflammation , Interleukin-1beta/genetics , Prostaglandin-Endoperoxide Synthases/genetics , RNA, Messenger , Reverse Transcriptase Polymerase Chain Reaction
16.
Adv Exp Med Biol ; 1197: 55-67, 2019.
Article in English | MEDLINE | ID: mdl-31732934

ABSTRACT

Gingival epithelium plays a pivotal role in protecting the underlying periodontium from the microbial colonization found in the gingival sulcus. Having an appropriate phenotype displayed by gingival epithelial cells is a critical host component required for protection against bacterial invasion into gingival tissues. In the present study, gingival epithelial homeostasis associated with the CXCL-8/IL-8 chemokine response was investigated in vitro to determine the mechanisms that gingival epithelial cells utilize for sensing gram-positive and gram-negative microorganisms. The findings of this study have demonstrated, by using Fusobacterium nucleatum, a heterogeneity of gingival epithelial cell response by Toll-like receptor (TLR) 2, a lipoprotein sensor. Notably, however, lipopolysaccharide (LPS), a major virulence factor of gram-negative bacteria, is not recognized by gingival epithelial cells unless the LPS is internalized into the cells. Activation of TLR4 in gingival epithelial cells occurs in the endosome, an intracellular event that requires a vesicular acidification to turn on TLR4 signaling, indicating their stringency for fine-tuning a local LPS response. This study has identified a unique LPS sensing mechanism of the oral epithelium to overcome a periodontal infection associated with LPS derived from gram-negative microbes that arises during dysbiosis.


Subject(s)
Gingiva , Lipopolysaccharides , Periodontitis , Epithelial Cells/immunology , Epithelial Cells/microbiology , Gingiva/cytology , Gingiva/immunology , Gingiva/microbiology , Humans , Interleukin-8/immunology , Lipopolysaccharides/metabolism , Periodontitis/immunology , Periodontitis/microbiology
17.
J Clin Exp Dent ; 11(10): e890-e897, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31636858

ABSTRACT

BACKGROUND: This study aimed to determine the esthetic proportion of six natural upper anterior teeth in northeastern Thai population as well as the level of esthetic satisfaction of distinct tooth proportions. MATERIAL AND METHODS: Front-view photographs were taken from participants living in the Northeastern Thailand (n=140) of the 18-35 years of age. Computerized program was used for measuring the size of each tooth. All subjects also scored the satisfaction level of different photographs portraying 4 proportions of anterior teeth (golden proportion, 70% RED, 80% RED, and an increasing proportion). RESULTS: We found that proportion of lateral-to-central incisor and canine-to-lateral incisor were 0.72 and 0.80, respectively on both sides. The proportions increased in mesio-distal direction. Our reported ratios were statistically different (P<0.05) from the golden proportion, golden percentage, and 70% RED. However, the ratio of lateral-to-central incisor, but not the canine-to-lateral ratio, was significantly different (P<0.05) when compared to 80% RED. Esthetic satisfaction level of 4 tooth proportions among northeastern Thais was not statistically different (P=0.054). CONCLUSIONS: An increasing proportion of upper anterior teeth in the northeastern Thai subpopulation was found. No difference of esthetic satisfaction of 4 different tooth proportions among Thai laypersons warrants further study. Key words:Esthetic proportion, Natural upper anterior teeth, Golden proportion, Increasing proportion, Esthetic satisfaction.

18.
Infect Immun ; 87(12)2019 12.
Article in English | MEDLINE | ID: mdl-31570556

ABSTRACT

The Porphyromonas gingivalis strain ATCC 33277 (33277) and 381 genomes are nearly identical. However, strain 33277 displays a significantly diminished capacity to stimulate host cell Toll-like receptor 2 (TLR2)-dependent signaling and interleukin-1ß (IL-1ß) production relative to 381, suggesting that there are strain-specific differences in one or more bacterial immune-modulatory factors. Genomic sequencing identified a single nucleotide polymorphism in the 33277 fimB allele (A→T), creating a premature stop codon in the 33277 fimB open reading frame relative to the 381 fimB allele. Gene exchange experiments established that the 33277 fimB allele reduces the immune-stimulatory capacity of this strain. Transcriptome comparisons revealed that multiple genes related to carboxy-terminal domain (CTD) family proteins, including the gingipains, were upregulated in 33277 relative to 381. A gingipain substrate degradation assay demonstrated that cell surface gingipain activity is higher in 33277, and an isogenic mutant strain deficient for the gingipains exhibited an increased ability to induce TLR2 signaling and IL-1ß production. Furthermore, 33277 and 381 mutant strains lacking CTD cell surface proteins were more immune-stimulatory than the parental wild-type strains, consistent with an immune-suppressive role for the gingipains. Our data show that the combination of an intact fimB allele and limited cell surface gingipain activity in P. gingivalis 381 renders this strain more immune-stimulatory. Conversely, a defective fimB allele and high-level cell surface gingipain activity reduce the capacity of P. gingivalis 33277 to stimulate host cell innate immune responses. In summary, genomic and transcriptomic comparisons identified key virulence characteristics that confer divergent host cell innate immune responses to these highly related P. gingivalis strains.


Subject(s)
Fimbriae Proteins/genetics , Fimbriae Proteins/immunology , Gingipain Cysteine Endopeptidases/metabolism , Porphyromonas gingivalis/genetics , Porphyromonas gingivalis/immunology , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/microbiology , Cell Line, Tumor , HEK293 Cells , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Interleukin-1beta/metabolism , Polymorphism, Single Nucleotide/genetics , Signal Transduction/immunology , THP-1 Cells , Toll-Like Receptor 2/metabolism
19.
Laser Ther ; 28(1): 19-25, 2019 Mar 31.
Article in English | MEDLINE | ID: mdl-31190694

ABSTRACT

BACKGROUND AND AIMS: Er:YAG laser has become optional for enamel and dentin preparation for a decade. However, it is unclear if Er:YAG laser is acceptable for enamel conditioning prior to an application of a pit-and-fissure sealant. This in vitro study thus aimed to investigate shear bond strength of a sealant to enamel etched with Er:YAG laser, as well as to demonstrate an alteration of enamel surface after the laser was applied. MATERIALS AND METHODS: One hundred and twenty extracted human premolars were divided into 4 groups (N = 30 per group) in which the enamel surfaces were treated with 1) 37% phosphoric acid, 2) Er:YAG laser 80 mJ/pulse, 2 Hz, 3) Er:YAG laser 120 mJ/pulse, 10 Hz, and 4) Er:YAG laser 140 mJ/pulse, 2 Hz. Prior to sealant application. Shear bond strength was determined by using a universal testing machine. Statistical analysis was performed using One-way ANOVA. Modification of enamel surface after laser ablation was also investigated using scanning electron microscope. RESULTS: Phosphoric acid-etched enamel yielded the highest shear bond strength when bonded with a sealant. Ablation of enamel with Er:YAG laser did not significantly improve sealant bonding since it demonstrated lower shear bond strength, compared to acid-etched enamel. Despite the presence of cracks after Er:YAG laser application, dissolution of enamel substances was limited. CONCLUSION: Our study has shown a reduced shear bond strength of dental sealant to an Er:YAG laser-irradiated enamel, compared with phosphoric acid-etched enamel.

20.
Materials (Basel) ; 12(10)2019 05 17.
Article in English | MEDLINE | ID: mdl-31108960

ABSTRACT

In this study, hydrogel films composed of low methoxyl pectin (LMP), gelatin, and carboxymethyl cellulose (CMC) were fabricated. Glycerin was used as a plasticizer while glutaraldehyde (Glu) and calcium chloride (CaCl2) were used as crosslinking agents in film preparation. Hydrogel films were morphologically characterized and evaluated for mechanical properties. In addition, the investigations for fluid uptake ability, water retention capacity, water vapor transmission rate, and integrity value of the invented films were performed. The results showed that F-Glu-Ca-G30 film demonstrated superior properties when compared to other prepared films. It demonstrated a high percentage of elongation at break (32.80%), fluid uptake ability (88.45% at 2 h), water retention capacity (81.70% at 2 h), water vapor transmission rate (1889 g/m2/day), and integrity value (86.42%). F-Glu-Ca-G30 film was subsequently selected for 10% w/w povidone iodine (PI) loading and tested for anti-Staphylococcus aureus activity using an agar diffusion assay. Notably, F-Glu-Ca-G30-PI film demonstrated a dramatic ability to inhibit microbial growth, when compared to both a blank film and iodine solution control. Our LMP/gelatin/CMC hydrogel film promises to be an effective dressing material with high fluid absorption capacity, fluid holding ability, and water vapor transmission rate. Incorporation of antibiotics such as povidone iodine into the films conferred its antimicrobial property thereby highlighting its potential dermatological use. However, further clinical studies of the application of this hydrogel film as wound dressing material is recommended.

SELECTION OF CITATIONS
SEARCH DETAIL
...