Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag Res ; 42(1): 27-40, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37455494

ABSTRACT

Plastic entering the environment is a growing threat for ecosystems. We estimate the annual mass of known Dutch plastic waste generated and littered and where it ends up. We use two methods: (1) a material flow analysis of plastic waste separately collected from 13 economic sectors (including households, industry and imports) and estimate the amount sent to processing plants or exported and (2) a mismanagement model from observations of litter (on Dutch beaches and riverbanks) plus estimates of inadequately managed exported plastic scraps entering the environment abroad. In 2017 (the most recent complete data set available), an estimate of 1990 (±111) kilotonnes [kt] of plastic waste was separately collected. The top three plastic waste generating sectors (74% of the total) were households, clothing and textiles, and importation. Our mismanagement model estimates that 4.3-21.2 kt enters the environment annually; almost all of which occurs in foreign countries after inadequate management of imported Dutch waste. We highlight unknowns, including the source and/or destination of imported (623 kt) and exported (514 kt) plastics, plastics in non-household mixed waste streams and the plastic fraction of some separately collected waste, for example, e-waste. Our results stress the need for improved monitoring and reporting of plastic waste. Beyond the Netherlands, our recommendations could also help other high-income countries' decision-makers reach their circular economy goals.


Subject(s)
Ecosystem , Waste Management , Netherlands , Plastics , Textiles , Industry , Recycling
2.
Anal Bioanal Chem ; 415(15): 2989-2998, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36922436

ABSTRACT

Isolation and detection of microplastics (MP) in marine samples is extremely cost- and labor-intensive, limiting the speed and amount of data that can be collected. In the current work, we describe rapid measurement of net-collected MPs (net mesh size 300 µm) using a benchtop near-infrared hyperspectral imaging system during a research expedition to the subtropical North Atlantic gyre. Suspected plastic particles were identified microscopically and mounted on a black adhesive background. Particles were imaged with a Specim FX17 near-infrared linescan camera and a motorized stage. A particle mapping procedure was built on existing edge-finding algorithms and a polymer identification method developed using spectra from virgin polymer reference materials. This preliminary work focused on polyethylene, polypropylene, and polystyrene as they are less dense than seawater and therefore likely to be found floating in the open ocean. A total of 27 net tows sampled 2534 suspected MP particles that were imaged and analyzed at sea. Approximately 77.1% of particles were identified as polyethylene, followed by polypropylene (9.2%). A small fraction of polystyrene was detected only at one station. Approximately 13.6% of particles were either other plastic polymers or were natural materials visually misidentified as plastics. Particle size distributions for PE and PP particles with a length greater than 1 mm followed an approximate power law relationship with abundance. This method allowed at-sea, near real-time identification of MP polymer types and particle dimensions, and shows great promise for rapid field measurements of microplastics in net-collected samples.

3.
Environ Sci Technol ; 56(22): 15528-15540, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36270631

ABSTRACT

Microplastic particles move three-dimensionally through the ocean, but modeling studies often do not consider size-dependent vertical transport processes. In addition, microplastic fragmentation in ocean environments remains poorly understood, despite fragments making up the majority of microplastic pollution in terms of the number of particles and despite its potential role in mass removal. Here, we first investigate the role of particle size and density on the large-scale transport of microplastics in the Mediterranean Sea and next analyze how fragmentation may affect transport and mass loss of plastics. For progressively smaller particle sizes, microplastics are shown to be less likely to be beached and more likely to reach open water. Smaller particles also generally get mixed deeper, resulting in lower near-surface concentrations of small particles despite their higher total abundance. Microplastic fragmentation is shown to be dominated by beach-based fragmentation, with ocean-based fragmentation processes likely having negligible influence. However, fragmentation remains a slow process acting on decadal time scales and as such likely does not have a major influence on the large-scale distribution of microplastics and mass loss over periods less than 3 years.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Particle Size , Mediterranean Sea , Environmental Monitoring , Water Pollutants, Chemical/analysis
4.
Geophys Res Lett ; 49(4): e2021GL097214, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35860482

ABSTRACT

Beaches are thought to be a large reservoir for marine plastics. To protect vulnerable beaches, it is advantageous to have information on the sources of this plastic. Here, we develop a universally applicable Bayesian framework to map sources of plastic arriving on a specific beach. In this framework, we combine Lagrangian backtracking simulations of drifting particles with estimates of plastic input from coastlines, rivers and fisheries. The advantage over traditional Lagrangian simulations is that the Bayesian framework can consider information on known sources, and thus facilitates spatiotemporal source attribution for plastic arriving at the specified beach. We show that the main sources for our target beach in southwest Netherlands are the east coast of the UK, the Dutch coast, the English Channel (fisheries) and the Thames, Seine, Rhine and Trieux (rivers). We also show that floating time is a major uncertainty in source attribution using backtracking.

5.
Environ Sci Technol ; 54(19): 11980-11989, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32852202

ABSTRACT

Estimates of plastic inputs into the ocean are orders of magnitude larger than what is found in the surface waters. This can be due to discrepancies in the sources of plastic released into the ocean but can also be explained by the fact that it is not well-known what the most dominant sinks of marine plastics are and on what time scales these operate. To get a better understanding on possible sources and sinks, an inverse modeling methodology is presented here for a Lagrangian ocean model, estimating floating plastic quantities in the Mediterranean Sea. Field measurements of plastic concentrations in the Mediterranean are used to inform parametrizations defining various sources of marine plastics and removal of plastic particles because of beaching and sinking. The parameters of the model are found using inverse modeling, by comparison of model results and measurements of floating plastic concentrations. Time scales for the sinks are found, and likely sources of plastics can be ranked in importance. A new mass balance is made for floating plastics in the Mediterranean: for 2015, there is an estimated input of 2100-3400 tonnes, and of plastics released since 2006, about 170-420 tonnes remain afloat in the surface waters, 49-63% ended up on coastlines, and 37-51% have sunk down.


Subject(s)
Environmental Monitoring , Plastics , Mediterranean Sea , Waste Products
SELECTION OF CITATIONS
SEARCH DETAIL
...