Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Commun Biol ; 6(1): 700, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37422584

ABSTRACT

Most investigations of geographical within-species differences are limited to focusing on a single species. Here, we investigate global differences for multiple bacterial species using a dataset of 757 metagenomics sewage samples from 101 countries worldwide. The within-species variations were determined by performing genome reconstructions, and the analyses were expanded by gene focused approaches. Applying these methods, we recovered 3353 near complete (NC) metagenome assembled genomes (MAGs) encompassing 1439 different MAG species and found that within-species genomic variation was in 36% of the investigated species (12/33) coherent with regional separation. Additionally, we found that variation of organelle genes correlated less with geography compared to metabolic and membrane genes, suggesting that the global differences of these species are caused by regional environmental selection rather than dissemination limitations. From the combination of the large and globally distributed dataset and in-depth analysis, we present a wide investigation of global within-species phylogeny of sewage bacteria. The global differences found here emphasize the need for worldwide data sets when making global conclusions.


Subject(s)
Bacteria , Sewage , Phylogeny , Sewage/microbiology , Bacteria/genetics , Cluster Analysis , Geography
2.
Infect Genet Evol ; 113: 105475, 2023 09.
Article in English | MEDLINE | ID: mdl-37394050

ABSTRACT

Salmonella enterica serovar Dublin is highly adapted to cattle and a relatively rare cause of human infections. In Denmark S. Dublin has been endemic in the cattle population for many years. A national surveillance program in the cattle population was established at herd-level to reduce the occurrence of S. Dublin. In this study, we analyzed 421 S. Dublin genomes from cattle and food in order to determine the trend of S. Dublin's population size over time in Denmark and the impact of intervention in the cattle industry on the bacterial population size. A phylogenetic tree based on SNPs exhibited two major clades and one small cluster. All isolates were ST10. The temporal phylogenetic tree for the S. Dublin isolates showed that the most recent common ancestor was estimated to be in ∼1980 for the two major clades. An effective population size over time based on a Bayesian skyline plot showed that the population size of S. Dublin decreased significantly between 2014 and 2019 in both major clades. This result was concordant with the decrease of infected human cases by S. Dublin in Denmark. The strengthening of a surveillance program in Denmark could be the cause for the reduction of S. Dublin's effective population size. This study showed that whole genome sequencing combined with computer intensive phylogenetic analysis estimating the effective size of the S. Dublin's population over time is a strongly relevant measure with respect to assessing the impact of control measures aiming to reduce the bacterial population in the reservoir and the risk for human infection.


Subject(s)
Cattle Diseases , Salmonella Infections, Animal , Salmonella enterica , Animals , Humans , Cattle , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/microbiology , Phylogeny , Bayes Theorem , Salmonella enterica/genetics , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Denmark/epidemiology
3.
Microb Genom ; 8(1)2022 01.
Article in English | MEDLINE | ID: mdl-35072601

ABSTRACT

Antimicrobial resistance (AMR) is one of the most important health threats globally. The ability to accurately identify resistant bacterial isolates and the individual antimicrobial resistance genes (ARGs) is essential for understanding the evolution and emergence of AMR and to provide appropriate treatment. The rapid developments in next-generation sequencing technologies have made this technology available to researchers and microbiologists at routine laboratories around the world. However, tools available for those with limited experience with bioinformatics are lacking, especially to enable researchers and microbiologists in low- and middle-income countries (LMICs) to perform their own studies. The CGE-tools (Center for Genomic Epidemiology) including ResFinder (https://cge.cbs.dtu.dk/services/ResFinder/) was developed to provide freely available easy to use online bioinformatic tools allowing inexperienced researchers and microbiologists to perform simple bioinformatic analyses. The main purpose was and is to provide these solutions for people involved in frontline diagnosis especially in LMICs. Since its original publication in 2012, ResFinder has undergone a number of improvements including improvement of the code and databases, inclusion of point mutations for selected bacterial species and predictions of phenotypes also for selected species. As of 28 September 2021, 820 803 analyses have been performed using ResFinder from 61 776 IP-addresses in 171 countries. ResFinder clearly fulfills a need for several people around the globe and we hope to be able to continue to provide this service free of charge in the future. We also hope and expect to provide further improvements including phenotypic predictions for additional bacterial species.


Subject(s)
Bacteria/genetics , Bacterial Proteins/genetics , Computational Biology/methods , Bacteria/drug effects , Databases, Genetic , Drug Resistance, Bacterial , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Internet , Microbial Sensitivity Tests , Mutation , Phenotype , Sequence Analysis, DNA , Software
4.
Microbiol Spectr ; 9(2): e0138721, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34612701

ABSTRACT

Storage of biological specimens is crucial in the life and medical sciences. Storage conditions for samples can be different for a number of reasons, and it is unclear what effect this can have on the inferred microbiome composition in metagenomics analyses. Here, we assess the effect of common storage temperatures (deep freezer, -80°C; freezer, -20°C; refrigerator, 5°C; room temperature, 22°C) and storage times (immediate sample processing, 0 h; next day, 16 h; over weekend, 64 h; longer term, 4, 8, and 12 months) as well as repeated sample freezing and thawing (2 to 4 freeze-thaw cycles). We examined two different pig feces and sewage samples, unspiked and spiked with a mock community, in triplicate, respectively, amounting to a total of 438 samples (777 Gbp; 5.1 billion reads). Storage conditions had a significant and systematic effect on the taxonomic and functional composition of microbiomes. Distinct microbial taxa and antimicrobial resistance classes were, in some situations, similarly affected across samples, while others were not, suggesting an impact of individual inherent sample characteristics. With an increasing number of freeze-thaw cycles, an increasing abundance of Firmicutes, Actinobacteria, and eukaryotic microorganisms was observed. We provide recommendations for sample storage and strongly suggest including more detailed information in the metadata together with the DNA sequencing data in public repositories to better facilitate meta-analyses and reproducibility of findings. IMPORTANCE Previous research has reported effects of DNA isolation, library preparation, and sequencing technology on metagenomics-based microbiome composition; however, the effect of biospecimen storage conditions has not been thoroughly assessed. We examined the effect of common sample storage conditions on metagenomics-based microbiome composition and found significant and, in part, systematic effects. Repeated freeze-thaw cycles could be used to improve the detection of microorganisms with more rigid cell walls, including parasites. We provide a data set that could also be used for benchmarking algorithms to identify and correct for unwanted batch effects. Overall, the findings suggest that all samples of a microbiome study should be stored in the same way. Furthermore, there is a need to mandate more detailed information about sample storage and processing be published together with DNA sequencing data at the International Nucleotide Sequence Database Collaboration (ENA/EBI, NCBI, DDBJ) or other repositories.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Microbiota , Preservation, Biological/methods , Specimen Handling/methods , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Drug Resistance, Bacterial , Feces/chemistry , Feces/microbiology , Humans , Preservation, Biological/instrumentation , Sewage/chemistry , Sewage/microbiology , Specimen Handling/instrumentation , Swine , Temperature , Time Factors
5.
J Antimicrob Chemother ; 75(12): 3491-3500, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32780112

ABSTRACT

OBJECTIVES: WGS-based antimicrobial susceptibility testing (AST) is as reliable as phenotypic AST for several antimicrobial/bacterial species combinations. However, routine use of WGS-based AST is hindered by the need for bioinformatics skills and knowledge of antimicrobial resistance (AMR) determinants to operate the vast majority of tools developed to date. By leveraging on ResFinder and PointFinder, two freely accessible tools that can also assist users without bioinformatics skills, we aimed at increasing their speed and providing an easily interpretable antibiogram as output. METHODS: The ResFinder code was re-written to process raw reads and use Kmer-based alignment. The existing ResFinder and PointFinder databases were revised and expanded. Additional databases were developed including a genotype-to-phenotype key associating each AMR determinant with a phenotype at the antimicrobial compound level, and species-specific panels for in silico antibiograms. ResFinder 4.0 was validated using Escherichia coli (n = 584), Salmonella spp. (n = 1081), Campylobacter jejuni (n = 239), Enterococcus faecium (n = 106), Enterococcus faecalis (n = 50) and Staphylococcus aureus (n = 163) exhibiting different AST profiles, and from different human and animal sources and geographical origins. RESULTS: Genotype-phenotype concordance was ≥95% for 46/51 and 25/32 of the antimicrobial/species combinations evaluated for Gram-negative and Gram-positive bacteria, respectively. When genotype-phenotype concordance was <95%, discrepancies were mainly linked to criteria for interpretation of phenotypic tests and suboptimal sequence quality, and not to ResFinder 4.0 performance. CONCLUSIONS: WGS-based AST using ResFinder 4.0 provides in silico antibiograms as reliable as those obtained by phenotypic AST at least for the bacterial species/antimicrobial agents of major public health relevance considered.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Animals , Anti-Bacterial Agents/pharmacology , Genotype , Humans , Microbial Sensitivity Tests , Phenotype
6.
Sci Data ; 7(1): 75, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32127544

ABSTRACT

Zoonotic Salmonella causes millions of human salmonellosis infections worldwide each year. Information about the source of the bacteria guides risk managers on control and preventive strategies. Source attribution is the effort to quantify the number of sporadic human cases of a specific illness to specific sources and animal reservoirs. Source attribution methods for Salmonella have so far been based on traditional wet-lab typing methods. With the change to whole genome sequencing there is a need to develop new methods for source attribution based on sequencing data. Four European datasets collected in Denmark (DK), Germany (DE), the United Kingdom (UK) and France (FR) are presented in this descriptor. The datasets contain sequenced samples of Salmonella Typhimurium and its monophasic variants isolated from human, food, animal and the environment. The objective of the datasets was either to attribute the human salmonellosis cases to animal reservoirs or to investigate contamination of the environment by attributing the environmental isolates to different animal reservoirs.


Subject(s)
Salmonella Food Poisoning , Salmonella typhimurium/genetics , Whole Genome Sequencing , Zoonoses/microbiology , Animals , Denmark , Disease Reservoirs , Environmental Microbiology , France , Germany , Humans , United Kingdom
7.
Front Public Health ; 8: 38, 2020.
Article in English | MEDLINE | ID: mdl-32158739

ABSTRACT

One Health surveillance of antimicrobial resistance (AMR) depends on a harmonized method for detection of AMR. Metagenomics-based surveillance offers the possibility to compare resistomes within and between different target populations. Its potential to be embedded into policy in the future calls for a timely and integrated knowledge dissemination strategy. We developed a blended training (e-learning and a workshop) on the use of metagenomics in surveillance of pathogens and AMR. The objectives were to highlight the potential of metagenomics in the context of integrated surveillance, to demonstrate its applicability through hands-on training and to raise awareness to bias factors. The target participants included staff of competent authorities responsible for AMR monitoring and academic staff. The training was organized in modules covering the workflow, requirements, benefits and challenges of surveillance by metagenomics. The training had 41 participants. The face-to-face workshop was essential to understand the expectations of the participants about the transition to metagenomics-based surveillance. After revision of the e-learning, we released it as a Massive Open Online Course (MOOC), now available at https://www.coursera.org/learn/metagenomics. This course has run in more than 20 sessions, with more than 3,000 learners enrolled, from more than 120 countries. Blended learning and MOOCs are useful tools to deliver knowledge globally and across disciplines. The released MOOC can be a reference knowledge source for international players in the application of metagenomics in surveillance.


Subject(s)
Anti-Bacterial Agents , Education, Distance , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Humans , Learning , Metagenomics
8.
Database (Oxford) ; 20192019 01 01.
Article in English | MEDLINE | ID: mdl-31868882

ABSTRACT

Data sharing enables research communities to exchange findings and build upon the knowledge that arises from their discoveries. Areas of public and animal health as well as food safety would benefit from rapid data sharing when it comes to emergencies. However, ethical, regulatory and institutional challenges, as well as lack of suitable platforms which provide an infrastructure for data sharing in structured formats, often lead to data not being shared or at most shared in form of supplementary materials in journal publications. Here, we describe an informatics platform that includes workflows for structured data storage, managing and pre-publication sharing of pathogen sequencing data and its analysis interpretations with relevant stakeholders.


Subject(s)
Databases, Factual , Information Dissemination , Bacteria/classification , Metagenomics , Phylogeny , User-Computer Interface
9.
Sci Rep ; 9(1): 11624, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406241

ABSTRACT

Community level genetic information can be essential to direct health measures and study demographic tendencies but is subject to considerable ethical and legal challenges. These concerns become less pronounced when analyzing urban sewage samples, which are ab ovo anonymous by their pooled nature. We were able to detect traces of the human mitochondrial DNA (mtDNA) in urban sewage samples and to estimate the distribution of human mtDNA haplogroups. An expectation maximization approach was used to determine mtDNA haplogroup mixture proportions for samples collected at each different geographic location. Our results show reasonable agreement with both previous studies of ancient evolution or migration and current US census data; and are also readily reproducible and highly robust. Our approach presents a promising alternative for sample collection in studies focusing on the ethnic and genetic composition of populations or diseases associated with different mtDNA haplogroups and genotypes.


Subject(s)
DNA, Mitochondrial/genetics , Haplotypes , Sewage , Urban Population , Evolution, Molecular , Humans , Phylogeny , Principal Component Analysis , Reproducibility of Results , Stochastic Processes
10.
Nat Commun ; 10(1): 1124, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850636

ABSTRACT

Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use metagenomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR.


Subject(s)
Bacteria/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Genes, Bacterial , Metagenome , Sewage/microbiology , Africa , Asia , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Epidemiological Monitoring , Europe , Humans , Metagenomics/methods , Microbial Consortia/drug effects , Microbial Consortia/genetics , North America , Oceania , Population Health , Socioeconomic Factors , South America
11.
Front Microbiol ; 8: 2351, 2017.
Article in English | MEDLINE | ID: mdl-29238330

ABSTRACT

Background/objectives: Whole genome sequencing (WGS) has proven to be a powerful subtyping tool for foodborne pathogenic bacteria like L. monocytogenes. The interests of genome-scale analysis for national surveillance, outbreak detection or source tracking has been largely documented. The genomic data however can be exploited with many different bioinformatics methods like single nucleotide polymorphism (SNP), core-genome multi locus sequence typing (cgMLST), whole-genome multi locus sequence typing (wgMLST) or multi locus predicted protein sequence typing (MLPPST) on either core-genome (cgMLPPST) or pan-genome (wgMLPPST). Currently, there are little comparisons studies of these different analytical approaches. Our objective was to assess and compare different genomic methods that can be implemented in order to cluster isolates of L. monocytogenes. Methods: The clustering methods were evaluated on a collection of 207 L. monocytogenes genomes of food origin representative of the genetic diversity of the Anses collection. The trees were then compared using robust statistical analyses. Results: The backward comparability between conventional typing methods and genomic methods revealed a near-perfect concordance. The importance of selecting a proper reference when calling SNPs was highlighted, although distances between strains remained identical. The analysis also revealed that the topology of the phylogenetic trees between wgMLST and cgMLST were remarkably similar. The comparison between SNP and cgMLST or SNP and wgMLST approaches showed that the topologies of phylogenic trees were statistically similar with an almost equivalent clustering. Conclusion: Our study revealed high concordance between wgMLST, cgMLST, and SNP approaches which are all suitable for typing of L. monocytogenes. The comparable clustering is an important observation considering that the two approaches have been variously implemented among reference laboratories.

12.
Genome Announc ; 5(16)2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28428290

ABSTRACT

Acinetobacter johnsonii C6 originates from creosote-polluted groundwater and performs ecological and evolutionary interactions with Pseudomonas putida in biofilms. The draft genome of A. johnsonii C6 is 3.7 Mbp and was shaped by mobile genetic elements. It reveals genes facilitating the biodegradation of aromatic hydrocarbons and resistance to antimicrobials and metals.

13.
PLoS One ; 12(1): e0169324, 2017.
Article in English | MEDLINE | ID: mdl-28103259

ABSTRACT

Cholera is still an important public health problem in several countries, including Thailand. In this study, a collection of clinical and environmental V. cholerae serogroup O1, O139, and non-O1/non-O139 strains originating from Thailand (1983 to 2013) was characterized to determine phenotypic and genotypic traits and to investigate the genetic relatedness. Using a combination of conventional methods and whole genome sequencing (WGS), 78 V. cholerae strains were identified. WGS was used to determine the serogroup, biotype, virulence, mobile genetic elements, and antimicrobial resistance genes using online bioinformatics tools. In addition, phenotypic antimicrobial resistance was determined by the minimal inhibitory concentration (MIC) test. The 78 V. cholerae strains belonged to the following serogroups O1: (n = 44), O139 (n = 16) and non-O1/non-O139 (n = 18). Interestingly, we found that the typical El Tor O1 strains were the major cause of clinical cholera during 1983-2000 with two Classical O1 strains detected in 2000. In 2004-2010, the El Tor variant strains revealed genotypes of the Classical biotype possessing either only ctxB or both ctxB and rstR while they harbored tcpA of the El Tor biotype. Thirty O1 and eleven O139 clinical strains carried CTXϕ (Cholera toxin) and tcpA as well four different pathogenic islands (PAIs). Beside non-O1/non-O139, the O1 environmental strains also presented chxA and Type Three Secretion System (TTSS). The in silico MultiLocus Sequence Typing (MLST) discriminated the O1 and O139 clinical strains from other serogroups and environmental strains. ST69 was dominant in the clinical strains belonging to the 7th pandemic clone. Non-O1/non-O139 and environmental strains showed various novel STs indicating genetic variation. Multidrug-resistant (MDR) strains were observed and conferred resistance to ampicillin, azithromycin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim and harboured variants of the SXT elements. For the first time since 1986, the presence of V. cholerae O1 Classical was reported causing cholera outbreaks in Thailand. In addition, we found that V. cholerae O1 El Tor variant and O139 were pre-dominating the pathogenic strains in Thailand. Using WGS and bioinformatic tools to analyze both historical and contemporary V. cholerae circulating in Thailand provided a more detailed understanding of the V. cholerae epidemiology, which ultimately could be applied for control measures and management of cholera in Thailand.


Subject(s)
Cholera/microbiology , Genetic Variation , Vibrio cholerae/genetics , Vibrio cholerae/isolation & purification , Cholera/epidemiology , Disease Outbreaks , Drug Resistance, Bacterial/genetics , Environmental Microbiology , Genes, Bacterial , Genomic Islands , Humans , Microbial Sensitivity Tests , Molecular Epidemiology , Multilocus Sequence Typing , Phylogeny , Serotyping , Thailand/epidemiology , Vibrio cholerae/pathogenicity , Vibrio cholerae O1/genetics , Vibrio cholerae O1/isolation & purification , Vibrio cholerae O1/pathogenicity , Vibrio cholerae O139/genetics , Vibrio cholerae O139/isolation & purification , Vibrio cholerae O139/pathogenicity , Vibrio cholerae non-O1/genetics , Vibrio cholerae non-O1/isolation & purification , Vibrio cholerae non-O1/pathogenicity , Virulence/genetics
14.
mSystems ; 1(3)2016.
Article in English | MEDLINE | ID: mdl-27822532

ABSTRACT

Salmonella enterica subsp. enterica bacteria are highly diverse foodborne pathogens that are subdivided into more than 1,500 serovars. The diversity is believed to result from mutational evolution, as well as intra- and interspecies recombination that potentially could be influenced by restriction-modification (RM) systems. The aim of this study was to investigate whether RM systems were linked to the evolution of Salmonella enterica subsp. enterica. The study included 221 Salmonella enterica genomes, of which 68 were de novo sequenced and 153 were public available genomes from ENA. The data set covered 97 different serovars of Salmonella enterica subsp. enterica and an additional five genomes from four other Salmonella subspecies as an outgroup for constructing the phylogenetic trees. The phylogenetic trees were constructed based on multiple alignment of core genes, as well as the presence or absence of pangenes. The topology of the trees was compared to the presence of RM systems, antimicrobial resistance (AMR) genes, Salmonella pathogenicity islands (SPIs), and plasmid replicons. We did not observe any correlation between evolution and the RM systems in S. enterica subsp. enterica. However, sublineage correlations and serovar-specific patterns were observed. Additionally, we conclude that plasmid replicons, SPIs, and AMR were all better correlated to serovars than to RM systems. This study suggests a limited influence of RM systems on the evolution of Salmonella enterica subsp. enterica, which could be due to the conjugational mode of horizontal gene transfer in Salmonella. Thus, we conclude that other factors must be involved in shaping the evolution of bacteria. IMPORTANCE The evolution of bacterial pathogens, their plasticity and ability to rapidly change and adapt to new surroundings are crucial for understanding the epidemiology and public health. With the application of genomics, it became clear that horizontal gene transfer played a key role in evolution. To understand the evolution and diversification of pathogens, we need to understand the processes that drive the horizontal gene transfer. Restriction-modification systems are thought to cause rearrangements within the chromosome, as well as act as a barrier to horizontal gene transfer. However, here we show that the correlation between restriction-modification systems and evolution in other bacterial species does not apply to Salmonella enterica subsp. enterica. In summary, from this work, we conclude that other mechanisms might be involved in controlling and shaping the evolution of Salmonella enterica subsp. enterica.

15.
PLoS One ; 11(5): e0155691, 2016.
Article in English | MEDLINE | ID: mdl-27191718

ABSTRACT

The prevalence of reported cholera was relatively low around the Lake Chad basin until 1991. Since then, cholera outbreaks have been reported every couple of years. The objective of this study was to investigate the 2010/2011 Vibrio cholerae outbreak in Cameroon to gain insight into the genomic make-up of the V. cholerae strains responsible for the outbreak. Twenty-four strains were isolated and whole genome sequenced. Known virulence genes, resistance genes and integrating conjugative element (ICE) elements were identified and annotated. A global phylogeny (378 genomes) was inferred using a single nucleotide polymorphism (SNP) analysis. The Cameroon outbreak was found to be clonal and clustered distant from the other African strains. In addition, a subset of the strains contained a deletion that was found in the ICE element causing less resistance. These results suggest that V. cholerae is endemic in the Lake Chad basin and different from other African strains.


Subject(s)
Cholera/epidemiology , Cholera/microbiology , Disease Outbreaks , Disease Reservoirs , Lakes/microbiology , Vibrio cholerae O1/genetics , Anti-Bacterial Agents/pharmacology , Cameroon/epidemiology , Cholera/history , Genome, Bacterial , Genotype , History, 21st Century , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Serogroup , Vibrio cholerae O1/classification , Vibrio cholerae O1/drug effects , Vibrio cholerae O1/isolation & purification
16.
Emerg Infect Dis ; 22(5): 900-2, 2016 May.
Article in English | MEDLINE | ID: mdl-27089007

ABSTRACT

We describe 2 fatal cases of methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 398 septicemia in persons who had no contact with livestock. Whole-genome sequencing of the isolated MRSA strains strongly suggest that both were of animal origin and that the patients had been infected through 2 independent person-to-person transmission chains.


Subject(s)
Cross Infection , Hospitals , Methicillin-Resistant Staphylococcus aureus/classification , Nursing Homes , Sepsis , Staphylococcal Infections/microbiology , Staphylococcal Infections/transmission , Aged , Animals , Denmark , Farmers , Fatal Outcome , Female , Genome, Bacterial , Humans , Livestock , Male , Methicillin-Resistant Staphylococcus aureus/genetics , Middle Aged , Phylogeny , Renal Dialysis/adverse effects , Staphylococcal Infections/diagnosis
17.
Euro Surveill ; 20(49)2015.
Article in English | MEDLINE | ID: mdl-26676364

ABSTRACT

The plasmid-mediated colistin resistance gene, mcr-1, was detected in an Escherichia coli isolate from a Danish patient with bloodstream infection and in five E. coli isolates from imported chicken meat. One isolate from chicken meat belonged to the epidemic spreading sequence type ST131. In addition to IncI2, an incX4 replicon was found to be linked to mcr-1. This report follows a recent detection of mcr-1 in E. coli from animals, food and humans in China.


Subject(s)
Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial , Escherichia coli Infections/blood , Escherichia coli/genetics , Escherichia coli/isolation & purification , Animals , Chickens , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Genotype , Humans , Meat/microbiology , Plasmids
18.
J Clin Microbiol ; 53(2): 677-80, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25428145

ABSTRACT

One unreported case of extended-spectrum-beta-lactamase (ESBL)-producing Salmonella enterica serovar Typhi was identified, whole-genome sequence typed, among other analyses, and compared to other available genomes of S. Typhi. The reported strain was similar to a previously published strain harboring blaSHV-12 from the Philippines and likely part of an undetected outbreak, the first of ESBL-producing S. Typhi.


Subject(s)
Salmonella typhi/enzymology , Salmonella typhi/isolation & purification , Travel , Typhoid Fever/microbiology , beta-Lactamases/metabolism , Disease Outbreaks , Genome, Bacterial , Genotype , Humans , Molecular Sequence Data , Philippines/epidemiology , Salmonella typhi/genetics , Sequence Analysis, DNA , Typhoid Fever/epidemiology , beta-Lactamases/genetics
19.
J Clin Microbiol ; 53(1): 262-72, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25392358

ABSTRACT

Retrospectively, we investigated the epidemiology of a massive Salmonella enterica serovar Typhi outbreak in Zambia during 2010 to 2012. Ninety-four isolates were susceptibility tested by MIC determinations. Whole-genome sequence typing (WGST) of 33 isolates and bioinformatic analysis identified the multilocus sequence type (MLST), haplotype, plasmid replicon, antimicrobial resistance genes, and genetic relatedness by single nucleotide polymorphism (SNP) analysis and genomic deletions. The outbreak affected 2,040 patients, with a fatality rate of 0.5%. Most (83.0%) isolates were multidrug resistant (MDR). The isolates belonged to MLST ST1 and a new variant of the haplotype, H58B. Most isolates contained a chromosomally translocated region containing seven antimicrobial resistance genes, catA1, blaTEM-1, dfrA7, sul1, sul2, strA, and strB, and fragments of the incompatibility group Q1 (IncQ1) plasmid replicon, the class 1 integron, and the mer operon. The genomic analysis revealed 415 SNP differences overall and 35 deletions among 33 of the isolates subjected to whole-genome sequencing. In comparison with other genomes of H58, the Zambian isolates separated from genomes from Central Africa and India by 34 and 52 SNPs, respectively. The phylogenetic analysis indicates that 32 of the 33 isolates sequenced belonged to a tight clonal group distinct from other H58 genomes included in the study. The small numbers of SNPs identified within this group are consistent with the short-term transmission that can be expected over a period of 2 years. The phylogenetic analysis and deletions suggest that a single MDR clone was responsible for the outbreak, during which occasional other S. Typhi lineages, including sensitive ones, continued to cocirculate. The common view is that the emerging global S. Typhi haplotype, H58B, containing the MDR IncHI1 plasmid is responsible for the majority of typhoid infections in Asia and sub-Saharan Africa; we found that a new variant of the haplotype harboring a chromosomally translocated region containing the MDR islands of IncHI1 plasmid has emerged in Zambia. This could change the perception of the term "classical MDR typhoid" currently being solely associated with the IncHI1 plasmid. It might be more common than presently thought that S. Typhi haplotype H58B harbors the IncHI1 plasmid or a chromosomally translocated MDR region or both.


Subject(s)
Disease Outbreaks , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Genomics , Salmonella typhi/drug effects , Salmonella typhi/genetics , Typhoid Fever/epidemiology , Typhoid Fever/microbiology , Anti-Bacterial Agents/pharmacology , Child , Child, Preschool , Chromosomes, Bacterial , Conjugation, Genetic , Evolution, Molecular , Female , Gene Order , Genes, Bacterial , Haplotypes , History, 21st Century , Humans , Male , Microbial Sensitivity Tests , Molecular Sequence Data , Multilocus Sequence Typing , Mutation , Phylogeny , Plasmids , Polymorphism, Single Nucleotide , Salmonella typhi/classification , Sequence Deletion , Translocation, Genetic , Typhoid Fever/history , Zambia/epidemiology
20.
PLoS One ; 9(8): e104984, 2014.
Article in English | MEDLINE | ID: mdl-25110940

ABSTRACT

Whole genome sequencing (WGS) shows great potential for real-time monitoring and identification of infectious disease outbreaks. However, rapid and reliable comparison of data generated in multiple laboratories and using multiple technologies is essential. So far studies have focused on using one technology because each technology has a systematic bias making integration of data generated from different platforms difficult. We developed two different procedures for identifying variable sites and inferring phylogenies in WGS data across multiple platforms. The methods were evaluated on three bacterial data sets and sequenced on three different platforms (Illumina, 454, Ion Torrent). We show that the methods are able to overcome the systematic biases caused by the sequencers and infer the expected phylogenies. It is concluded that the cause of the success of these new procedures is due to a validation of all informative sites that are included in the analysis. The procedures are available as web tools.


Subject(s)
Genome, Bacterial/genetics , High-Throughput Nucleotide Sequencing/methods , Salmonella typhimurium/genetics , Sequence Analysis, DNA/methods , Staphylococcus aureus/genetics , Base Sequence , DNA, Bacterial/genetics , Humans , Molecular Sequence Data , Phylogeny , Polymorphism, Single Nucleotide/genetics , Salmonella typhimurium/isolation & purification , Staphylococcus aureus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...