Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2024: 7747599, 2024.
Article in English | MEDLINE | ID: mdl-38884019

ABSTRACT

Introduction: PPIs, or proton pump inhibitors, are the most widely prescribed drugs. There is a debate regarding the relationship between long-term PPI use and the risk of type 2 diabetes mellitus (T2DM). A potential connection between T2DM and PPIs could be an elevated gastrin concentration. This study is aimed at investigating the long-term effects of PPI omeprazole (OZ) on glucose homeostasis and pancreatic gene expression profile in mice. Methods: Healthy adult male BALB/c mice were randomly divided into three equal groups (n = 10 in each one): (1) experimental mice that received OZ 20 mg/kg; (2) control mice that received 30 µl saline per os; (3) intact mice without any interventions. Mice were treated for 30 weeks. Glucose homeostasis was investigated by fasting blood glucose level, oral glucose tolerance test (GTT), insulin tolerance test (ITT), and basal insulin resistance (HOMA-IR). Serum gastrin and insulin concentration were determined by ELISA. Expressions of Sirt1, Pparg, Nfκb1 (p105), Nfe2l2, Cxcl5, Smad3, H2a.z, and H3f3b were measured by RT-PCR. Result: The ROC analysis revealed an increase in fasting blood glucose levels in OZ-treated mice in comparison with control and intact groups during the 30-week experiment. A slight but statistically significant increase in glucose tolerance and insulin sensitivity was observed in OZ-treated mice within 30 weeks of the experiment. The mice treated with OZ exhibited significant increases in serum insulin and gastrin levels, accompanied by a rise in the HOMA-IR level. These animals had a statistically significant increase in Sirt1, Pparg, and Cxcl5 mRNA expression. There were no differences in ß-cell numbers between groups. Conclusion: Long-term OZ treatment induced hypergastrin- and hyperinsulinemia and increased expression of Sirt1, Pparg, and Cxcl5 in mouse pancreatic tissues accompanied by specific changes in glucose metabolism. The mechanism of omeprazole-induced Cxcl5 mRNA expression and its association with pancreatic cancer risk should be investigated.


Subject(s)
Blood Glucose , Gastrins , Homeostasis , Insulin Resistance , Mice, Inbred BALB C , Omeprazole , Animals , Omeprazole/pharmacology , Omeprazole/adverse effects , Gastrins/blood , Gastrins/metabolism , Male , Mice , Homeostasis/drug effects , Blood Glucose/metabolism , Insulin/metabolism , Insulin/blood , Gene Expression Regulation/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/chemically induced , Glucose Tolerance Test , Proton Pump Inhibitors/pharmacology , Proton Pump Inhibitors/adverse effects , Glucose/metabolism
2.
Physiol Rep ; 11(17): e15823, 2023 09.
Article in English | MEDLINE | ID: mdl-37704580

ABSTRACT

The circadian rhythm system regulates lung function as well as local and systemic inflammations. The alteration of this rhythm might be induced by a change in the eating rhythm. Peroxisome proliferator-activated receptor gamma (PPARG) is a key molecule involved in circadian rhythm regulation, lung functions, and metabolic processes. We described the effect of the PPARG agonist pioglitazone (PZ) on the diurnal mRNA expression profile of core circadian clock genes (Arntl, Clock, Nr1d1, Cry1, Cry2, Per1, and Per2) and metabolism- and inflammation-related genes (Nfe2l2, Pparg, Rela, and Cxcl5) in the male murine lung disrupted by reversed feeding (RF). In mice, RF disrupted the diurnal expression pattern of core clock genes. It decreased Nfe2l2 and Pparg and increased Rela and Cxcl5 expression in lung tissue. There were elevated levels of IL-6, TNF-alpha, total cells, macrophages, and lymphocyte counts in bronchoalveolar lavage (BAL) with a significant increase in vascular congestion and cellular infiltrates in male mouse lung tissue. Administration of PZ regained the diurnal clock gene expression, increased Nfe2l2 and Pparg expression, and reduced Rela, Cxcl5 expression and IL-6, TNF-alpha, and cellularity in BAL. PZ administration at 7 p.m. was more efficient than at 7 a.m.


Subject(s)
PPAR gamma , Tumor Necrosis Factor-alpha , Animals , Male , Mice , Dimercaprol , Inflammation/genetics , Interleukin-6 , Lung , Pioglitazone/pharmacology , PPAR gamma/genetics , RNA, Messenger
4.
Acta Biomed ; 94(1): e2023030, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36786264

ABSTRACT

BACKGROUND AND AIM: Angiotensin-converting enzyme 2 (ACE2), transmembrane serine 2 and serine 11A proteases (TMPRSS2, TMPRSS11A), and a cell surface cluster of differentiation 147 (CD147) might be a gene candidate that exerts the susceptibility to and mortality from coronavirus disease 19 (COVID-19). The aim of this study was to investigate the associations between ace2, tmprss2, tmprss11a, and cd147 polymorphic variants and the severity of COVID-19 in the Ukrainian population. METHODS: The study population consisted of the Ukrainian population with COVID-19: patients without oxygen therapy (n=62), with non-invasive (n=92) and invasive (n=35) oxygen therapy, as well as control subjects (n=92). Allelic polymorphisms of ace2 rs4240157, tmprss2 rs12329760, and tmprss11a rs353163 were determined by real-time PCR, and cd147 rs8259 polymorphism was detected by PCR with subsequent restrictase analysis. We compared investigated polymorphisms distribution with other populations by meta-analysis. RESULTS: Our study is the first to obtain data about the distribution of investigated gene polymorphisms in the Ukrainian population: tmprss2 rs12329760 - CC 60.9%, CT 35.9%, TT 3.2%; tmprss11a rs353163 - CC 46.7%, CT 40.2%, TT 13.1%; ace2 rs4240157 - CC 7.6%, C 18.5%, CT 22.8%, TT 19.6%, T 31.5%; cd147 rs8259 - TT 60.9%, AT 32.6%, AA 6.5%. This distribution was similar to the Northern, Western and Southern European populations. There was a statistically significant difference in the frequency of tmprss2 polymorphic genotypes CC 57.1%, CT 28.6%, and TT 14.3% (P<0.05) in COVID-19 patients with invasive oxygen therapy in comparison with non-invasive oxygen therapy. This tmprss2 mutation occurs in the scavenger receptor cysteine-rich (SRCR) domain and might be important for protein-protein interaction in a calcium-dependent manner. CONCLUSIONS: Our study indicated the presence of an association between the tmprss2 rs12329760 polymorphism and the severity of COVID-19 in the Ukrainian population.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , Angiotensin-Converting Enzyme 2/genetics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Polymorphism, Genetic , Serine/genetics , Oxygen , Membrane Proteins/genetics , Serine Proteases/genetics , Serine Endopeptidases/genetics
5.
Physiol Rep ; 10(23): e15535, 2022 12.
Article in English | MEDLINE | ID: mdl-36511486

ABSTRACT

This study examined the influence of PPARG activation by pioglitazone (PG) on the mRNA of core clock, inflammation- and metabolism-related genes in the mouse kidney medulla as well as urinary sodium/potassium excretion rhythms disrupted by reverse feeding. Mice were assigned to daytime feeding and nighttime feeding groups. PG 20 mg/kg was administered at 7 am or 7 pm. On day 8 of the feeding intervention, mice were killed at noon and midnight. Kidney medulla expression of Arntl, Clock, Nr1d1, Cry1, Cry2, Per1, Per2, Nfe2l2, Pparg, and Scnn1g was determined by qRT PCR. We measured urinary K+ , Na+ , urine volume, food, and H2 O intake. The reverse feeding uncoupled the peripheral clock gene rhythm in mouse kidney tissues. It was accompanied by a decreased expression of Nfe2l2 and Pparg as well as an increased expression of Rela and Scnn1g. These changes in gene expressions concurred with an increase in urinary Na+ , K+ , water excretion, microcirculation disorders, and cell loss, especially in distal tubules. PG induced the restoration of diurnal core clock gene expression as well as Nfe2l2, Pparg, Scnn1g mRNA, and decreased Rela expressions, stimulating Na+ reabsorption and inhibiting K+ excretion. PG intake at 7 pm was more effective than at 7 am.


Subject(s)
Circadian Rhythm , Kidney Medulla , Animals , Mice , Circadian Rhythm/physiology , Kidney Medulla/metabolism , Pioglitazone/pharmacology , PPAR gamma/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...