Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 451, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38200005

ABSTRACT

Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8+ T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8+ T cell pool. CD8+ T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8+ T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E2 (PGE2), which drives mitochondrial depolarization in CD8+ T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE2 sensing promotes CD8+ T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE2-autophagy-glutathione axis defines the metabolic adaptation of CD8+ T cells to the intestinal microenvironment, to ultimately influence the T cell pool.


Subject(s)
Autophagy , CD8-Positive T-Lymphocytes , Humans , Animals , Mice , Dinoprostone , Genes, Mitochondrial , Glutathione
2.
iScience ; 26(10): 107719, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37674984

ABSTRACT

Little is known about the effects of high-fat diet (HFD)-induced obesity on resident colonic lamina propria (LP) macrophages (LPMs) function and metabolism. Here, we report that obesity and diabetes resulted in increased macrophage infiltration in the colon. These macrophages exhibited the residency phenotype CX3CR1hiMHCIIhi and were CD4-TIM4-. During HFD, resident colonic LPM exhibited a lipid metabolism gene expression signature that overlapped that used to define lipid-associated macrophages (LAMs). Via single-cell RNA sequencing, we identified a sub-cluster of macrophages, increased in HFD, that were responsible for the LAM signature. Compared to other macrophages in the colon, these cells were characterized by elevated glycolysis, phagocytosis, and efferocytosis signatures. CX3CR1hiMHCIIhi colonic resident LPMs had fewer lipid droplets (LDs) and decreased triacylglycerol (TG) content compared to equivalent cells in lean mice and exhibited increased phagocytic capacity, suggesting that HFD induces adaptive responses in LPMs to limit bacterial translocation.

3.
Immunity ; 56(4): 723-741, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37044062

ABSTRACT

The immune response is tailored to the environment in which it takes place. Immune cells sense and adapt to changes in their surroundings, and it is now appreciated that in addition to cytokines made by stromal and epithelial cells, metabolic cues provide key adaptation signals. Changes in immune cell activation states are linked to changes in cellular metabolism that support function. Furthermore, metabolites themselves can signal between as well as within cells. Here, we discuss recent progress in our understanding of how metabolic regulation relates to type 2 immunity firstly by considering specifics of metabolism within type 2 immune cells and secondly by stressing how type 2 immune cells are integrated more broadly into the metabolism of the organism as a whole.


Subject(s)
Immune System , Cytokines/immunology , Humans , Animals , Th2 Cells/immunology , Macrophages/immunology , Adaptation, Physiological , Adipose Tissue/immunology
4.
bioRxiv ; 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36993703

ABSTRACT

Immune cells must adapt to different environments during the course of an immune response. We studied the adaptation of CD8 + T cells to the intestinal microenvironment and how this process shapes their residency in the gut. CD8 + T cells progressively remodel their transcriptome and surface phenotype as they acquire gut residency, and downregulate expression of mitochondrial genes. Human and mouse gut-resident CD8 + T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We found that the intestinal microenvironment is rich in prostaglandin E 2 (PGE 2 ), which drives mitochondrial depolarization in CD8 + T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE 2 sensing promotes CD8 + T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell population. Thus, a PGE 2 -autophagy-glutathione axis defines the metabolic adaptation of CD8 + T cells to the intestinal microenvironment, to ultimately influence the T cell pool.

5.
Sci Immunol ; 7(76): eadd3263, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36240286

ABSTRACT

Type 2 immunity is associated with adipose tissue (AT) homeostasis and infection with parasitic helminths, but whether AT participates in immunity to these parasites is unknown. We found that the fat content of mesenteric AT (mAT) declined in mice during infection with a gut-restricted helminth. This was associated with the accumulation of metabolically activated, interleukin-33 (IL-33), thymic stromal lymphopoietin (TSLP), and extracellular matrix (ECM)-producing stromal cells. These cells shared transcriptional features, including the expression of Dpp4 and Pi16, with multipotent progenitor cells (MPC) that have been identified in numerous tissues and are reported to be capable of differentiating into fibroblasts and adipocytes. Concomitantly, mAT became infiltrated with resident T helper 2 (TH2) cells that responded to TSLP and IL-33 by producing stromal cell-stimulating cytokines, including transforming growth factor ß1 (TGFß1) and amphiregulin. These TH2 cells expressed genes previously associated with type 2 innate lymphoid cells (ILC2), including Nmur1, Calca, Klrg1, and Arg1, and persisted in mAT for at least 11 months after anthelmintic drug-mediated clearance of infection. We found that MPC and TH2 cells localized to ECM-rich interstitial spaces that appeared shared between mesenteric lymph node, mAT, and intestine. Stromal cell expression of epidermal growth factor receptor (EGFR), the receptor for amphiregulin, was required for immunity to infection. Our findings point to the importance of MPC and TH2 cell interactions within the interstitium in orchestrating AT remodeling and immunity to an intestinal infection.


Subject(s)
Immunity, Innate , Interleukin-33 , Adipose Tissue/metabolism , Amphiregulin , Animals , Cytokines/metabolism , Dipeptidyl Peptidase 4 , ErbB Receptors , Lymphocytes , Mice , Th2 Cells , Transforming Growth Factor beta1
6.
Nature ; 610(7932): 555-561, 2022 10.
Article in English | MEDLINE | ID: mdl-36171294

ABSTRACT

CD4+ T cell differentiation requires metabolic reprogramming to fulfil the bioenergetic demands of proliferation and effector function, and enforce specific transcriptional programmes1-3. Mitochondrial membrane dynamics sustains mitochondrial processes4, including respiration and tricarboxylic acid (TCA) cycle metabolism5, but whether mitochondrial membrane remodelling orchestrates CD4+ T cell differentiation remains unclear. Here we show that unlike other CD4+ T cell subsets, T helper 17 (TH17) cells have fused mitochondria with tight cristae. T cell-specific deletion of optic atrophy 1 (OPA1), which regulates inner mitochondrial membrane fusion and cristae morphology6, revealed that TH17 cells require OPA1 for its control of the TCA cycle, rather than respiration. OPA1 deletion amplifies glutamine oxidation, leading to impaired NADH/NAD+ balance and accumulation of TCA cycle metabolites and 2-hydroxyglutarate-a metabolite that influences the epigenetic landscape5,7. Our multi-omics approach revealed that the serine/threonine kinase liver-associated kinase B1 (LKB1) couples mitochondrial function to cytokine expression in TH17 cells by regulating TCA cycle metabolism and transcriptional remodelling. Mitochondrial membrane disruption activates LKB1, which restrains IL-17 expression. LKB1 deletion restores IL-17 expression in TH17 cells with disrupted mitochondrial membranes, rectifying aberrant TCA cycle glutamine flux, balancing NADH/NAD+ and preventing 2-hydroxyglutarate production from the promiscuous activity of the serine biosynthesis enzyme phosphoglycerate dehydrogenase (PHGDH). These findings identify OPA1 as a major determinant of TH17 cell function, and uncover LKB1 as a sensor linking mitochondrial cues to effector programmes in TH17 cells.


Subject(s)
AMP-Activated Protein Kinases , Mitochondria , Th17 Cells , Glutamine/metabolism , Interleukin-17/metabolism , Mitochondria/metabolism , NAD/metabolism , Phosphoglycerate Dehydrogenase/metabolism , Serine/biosynthesis , Serine/metabolism , Th17 Cells/cytology , Th17 Cells/immunology , Th17 Cells/metabolism , AMP-Activated Protein Kinases/metabolism , Citric Acid Cycle , GTP Phosphohydrolases/deficiency , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism
7.
Cell Metab ; 34(5): 747-760.e6, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35508110

ABSTRACT

Adipose tissue (AT) plays a central role in systemic metabolic homeostasis, but its function during bacterial infection remains unclear. Following subcutaneous bacterial infection, adipocytes surrounding draining lymph nodes initiated a transcriptional response indicative of stimulation with IFN-γ and a shift away from lipid metabolism toward an immunologic function. Natural killer (NK) and invariant NK T (iNKT) cells were identified as sources of infection-induced IFN-γ in perinodal AT (PAT). IFN-γ induced Nos2 expression in adipocytes through a process dependent on nuclear-binding oligomerization domain 1 (NOD1) sensing of live intracellular bacteria. iNOS expression was coupled to metabolic rewiring, inducing increased diversion of extracellular L-arginine through the arginosuccinate shunt and urea cycle to produce nitric oxide (NO), directly mediating bacterial clearance. In vivo, control of infection in adipocytes was dependent on adipocyte-intrinsic sensing of IFN-γ and expression of iNOS. Thus, adipocytes are licensed by innate lymphocytes to acquire anti-bacterial functions during infection.


Subject(s)
Cues , Killer Cells, Natural , Adipocytes/metabolism , Immunity , Interferon-gamma/metabolism
8.
Sci Immunol ; 7(70): eabl7482, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35427180

ABSTRACT

Macrophages populate every organ during homeostasis and disease, displaying features of tissue imprinting and heterogeneous activation. The disconnected picture of macrophage biology that has emerged from these observations is a barrier for integration across models or with in vitro macrophage activation paradigms. We set out to contextualize macrophage heterogeneity across mouse tissues and inflammatory conditions, specifically aiming to define a common framework of macrophage activation. We built a predictive model with which we mapped the activation of macrophages across 12 tissues and 25 biological conditions, finding a notable commonality and finite number of transcriptional profiles, in particular among infiltrating macrophages, which we modeled as defined stages along four conserved activation paths. These activation paths include a "phagocytic" regulatory path, an "inflammatory" cytokine-producing path, an "oxidative stress" antimicrobial path, or a "remodeling" extracellular matrix deposition path. We verified this model with adoptive cell transfer experiments and identified transient RELMɑ expression as a feature of monocyte-derived macrophage tissue engraftment. We propose that this integrative approach of macrophage classification allows the establishment of a common predictive framework of monocyte-derived macrophage activation in inflammation and homeostasis.


Subject(s)
Macrophage Activation , Macrophages , Animals , Cytokines/metabolism , Homeostasis , Inflammation/metabolism , Mice
9.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: mdl-35027468

ABSTRACT

Anti-TNF therapies are a core anti-inflammatory approach for chronic diseases such as rheumatoid arthritis and Crohn's Disease. Previously, we and others found that TNF blocks the emergence and function of alternative-activated or M2 macrophages involved in wound healing and tissue-reparative functions. Conceivably, anti-TNF drugs could mediate their protective effects in part by an altered balance of macrophage activity. To understand the mechanistic basis of how TNF regulates tissue-reparative macrophages, we used RNAseq, scRNAseq, ATACseq, time-resolved phospho-proteomics, gene-specific approaches, metabolic analysis, and signaling pathway deconvolution. We found that TNF controls tissue-reparative macrophage gene expression in a highly gene-specific way, dependent on JNK signaling via the type 1 TNF receptor on specific populations of alternative-activated macrophages. We further determined that JNK signaling has a profound and broad effect on activated macrophage gene expression. Our findings suggest that TNF's anti-M2 effects evolved to specifically modulate components of tissue and reparative M2 macrophages and TNF is therefore a context-specific modulator of M2 macrophages rather than a pan-M2 inhibitor.


Subject(s)
Macrophages , Transcription, Genetic , Tumor Necrosis Factor-alpha/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , Female , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription, Genetic/drug effects , Transcription, Genetic/genetics , Tumor Necrosis Factor Inhibitors/pharmacology
10.
J Allergy Clin Immunol ; 149(6): 2078-2090, 2022 06.
Article in English | MEDLINE | ID: mdl-34974067

ABSTRACT

BACKGROUND: Infectious agents can reprogram or "train" macrophages and their progenitors to respond more readily to subsequent insults. However, whether such an inflammatory memory exists in type 2 inflammatory conditions such as allergic asthma was not known. OBJECTIVE: We sought to decipher macrophage-trained immunity in allergic asthma. METHODS: We used a combination of clinical sampling of house dust mite (HDM)-allergic patients, HDM-induced allergic airway inflammation in mice, and an in vitro training setup to analyze persistent changes in macrophage eicosanoid, cytokine, and chemokine production as well as the underlying metabolic and epigenetic mechanisms. Transcriptional and metabolic profiles of patient-derived and in vitro trained macrophages were assessed by RNA sequencing or metabolic flux analysis and liquid chromatography-tandem mass spectrometry analysis, respectively. RESULTS: We found that macrophages differentiated from bone marrow or blood monocyte progenitors of HDM-allergic mice or asthma patients show inflammatory transcriptional reprogramming and excessive mediator (TNF-α, CCL17, leukotriene, PGE2, IL-6) responses upon stimulation. Macrophages from HDM-allergic mice initially exhibited a type 2 imprint, which shifted toward a classical inflammatory training over time. HDM-induced allergic airway inflammation elicited a metabolically activated macrophage phenotype, producing high amounts of 2-hydroxyglutarate (2-HG). HDM-induced macrophage training in vitro was mediated by a formyl peptide receptor 2-TNF-2-HG-PGE2/PGE2 receptor 2 axis, resulting in an M2-like macrophage phenotype with high CCL17 production. TNF blockade by etanercept or genetic ablation of Tnf in myeloid cells prevented the inflammatory imprinting of bone marrow-derived macrophages from HDM-allergic mice. CONCLUSION: Allergen-triggered inflammation drives a TNF-dependent innate memory, which may perpetuate and exacerbate chronic type 2 airway inflammation and thus represents a target for asthma therapy.


Subject(s)
Asthma , Hypersensitivity , Animals , Dermatophagoides pteronyssinus , Disease Models, Animal , Humans , Inflammation , Macrophages , Mice , Prostaglandins E/metabolism , Pyroglyphidae
11.
Immunity ; 54(11): 2514-2530.e7, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34717796

ABSTRACT

Human plasmacytoid dendritic cells (pDCs) are interleukin-3 (IL-3)-dependent cells implicated in autoimmunity, but the role of IL-3 in pDC biology is poorly understood. We found that IL-3-induced Janus kinase 2-dependent expression of SLC7A5 and SLC3A2, which comprise the large neutral amino acid transporter, was required for mammalian target of rapamycin complex 1 (mTORC1) nutrient sensor activation in response to toll-like receptor agonists. mTORC1 facilitated increased anabolic activity resulting in type I interferon, tumor necrosis factor, and chemokine production and the expression of the cystine transporter SLC7A11. Loss of function of these amino acid transporters synergistically blocked cytokine production by pDCs. Comparison of in vitro-activated pDCs with those from lupus nephritis lesions identified not only SLC7A5, SLC3A2, and SLC7A11 but also ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) as components of a shared transcriptional signature, and ENPP2 inhibition also blocked cytokine production. Our data identify additional therapeutic targets for autoimmune diseases in which pDCs are implicated.


Subject(s)
Amino Acid Transport Systems/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression Regulation , Amino Acid Transport Systems/metabolism , Autoimmunity , Biomarkers , Cytokines/genetics , Cytokines/metabolism , Disease Susceptibility , Energy Metabolism , Humans , Immunity , Signal Transduction
12.
Cell ; 184(16): 4186-4202.e20, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34216540

ABSTRACT

Polyamine synthesis represents one of the most profound metabolic changes during T cell activation, but the biological implications of this are scarcely known. Here, we show that polyamine metabolism is a fundamental process governing the ability of CD4+ helper T cells (TH) to polarize into different functional fates. Deficiency in ornithine decarboxylase, a crucial enzyme for polyamine synthesis, results in a severe failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across TH cell subsets. Polyamines control TH differentiation by providing substrates for deoxyhypusine synthase, which synthesizes the amino acid hypusine, and mice in which T cells are deficient for hypusine develop severe intestinal inflammatory disease. Polyamine-hypusine deficiency caused widespread epigenetic remodeling driven by alterations in histone acetylation and a re-wired tricarboxylic acid (TCA) cycle. Thus, polyamine metabolism is critical for maintaining the epigenome to focus TH cell subset fidelity.


Subject(s)
Cell Lineage , Polyamines/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Polarity/drug effects , Cell Proliferation/drug effects , Chromatin/metabolism , Citric Acid Cycle/drug effects , Colitis/immunology , Colitis/pathology , Cytokines/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Epigenome , Histones/metabolism , Inflammation/immunology , Inflammation/pathology , Lymphocyte Subsets/drug effects , Lymphocyte Subsets/metabolism , Lysine/analogs & derivatives , Lysine/metabolism , Mice , Mice, Inbred C57BL , Ornithine Decarboxylase/metabolism , T-Lymphocytes, Helper-Inducer/drug effects , Th17 Cells/drug effects , Th17 Cells/immunology , Transcription Factors/metabolism
13.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161266

ABSTRACT

Fever can provide a survival advantage during infection. Metabolic processes are sensitive to environmental conditions, but the effect of fever on T cell metabolism is not well characterized. We show that in activated CD8+ T cells, exposure to febrile temperature (39 °C) augmented metabolic activity and T cell effector functions, despite having a limited effect on proliferation or activation marker expression. Transcriptional profiling revealed an up-regulation of mitochondrial pathways, which was consistent with increased mass and metabolism observed in T cells exposed to 39 °C. Through in vitro and in vivo models, we determined that mitochondrial translation is integral to the enhanced metabolic activity and function of CD8+ T cells exposed to febrile temperature. Transiently exposing donor lymphocytes to 39 °C prior to infusion in a myeloid leukemia mouse model conferred enhanced therapeutic efficacy, raising the possibility that exposure of T cells to febrile temperatures could have clinical potential.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Fever/immunology , Mitochondria/metabolism , Protein Biosynthesis , Animals , Antineoplastic Agents/metabolism , CD8-Positive T-Lymphocytes/ultrastructure , Cytokines/biosynthesis , Glucose/metabolism , Leukemia, Myeloid/immunology , Leukemia, Myeloid/pathology , Leukemia, Myeloid/prevention & control , Mice, Inbred BALB C , Mice, Inbred C57BL , Mitochondria/ultrastructure , Models, Biological , Temperature
15.
Nature ; 592(7854): 444-449, 2021 04.
Article in English | MEDLINE | ID: mdl-33762736

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a manifestation of systemic metabolic disease related to obesity, and causes liver disease and cancer1,2. The accumulation of metabolites leads to cell stress and inflammation in the liver3, but mechanistic understandings of liver damage in NASH are incomplete. Here, using a preclinical mouse model that displays key features of human NASH (hereafter, NASH mice), we found an indispensable role for T cells in liver immunopathology. We detected the hepatic accumulation of CD8 T cells with phenotypes that combined tissue residency (CXCR6) with effector (granzyme) and exhaustion (PD1) characteristics. Liver CXCR6+ CD8 T cells were characterized by low activity of the FOXO1 transcription factor, and were abundant in NASH mice and in patients with NASH. Mechanistically, IL-15 induced FOXO1 downregulation and CXCR6 upregulation, which together rendered liver-resident CXCR6+ CD8 T cells susceptible to metabolic stimuli (including acetate and extracellular ATP) and collectively triggered auto-aggression. CXCR6+ CD8 T cells from the livers of NASH mice or of patients with NASH had similar transcriptional signatures, and showed auto-aggressive killing of cells in an MHC-class-I-independent fashion after signalling through P2X7 purinergic receptors. This killing by auto-aggressive CD8 T cells fundamentally differed from that by antigen-specific cells, which mechanistically distinguishes auto-aggressive and protective T cell immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Liver/immunology , Liver/pathology , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/pathology , Receptors, CXCR6/immunology , Acetates/pharmacology , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/pathology , Cell Death/drug effects , Cell Death/immunology , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Interleukin-15/immunology , Interleukin-15/pharmacology , Liver/drug effects , Male , Mice , Mice, Inbred C57BL
16.
Cell Metab ; 32(6): 981-995.e7, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33264603

ABSTRACT

Mitochondria constantly adapt to the metabolic needs of a cell. This mitochondrial plasticity is critical to T cells, which modulate metabolism depending on antigen-driven signals and environment. We show here that de novo synthesis of the mitochondrial membrane-specific lipid cardiolipin maintains CD8+ T cell function. T cells deficient for the cardiolipin-synthesizing enzyme PTPMT1 had reduced cardiolipin and responded poorly to antigen because basal cardiolipin levels were required for activation. However, neither de novo cardiolipin synthesis, nor its Tafazzin-dependent remodeling, was needed for T cell activation. In contrast, PTPMT1-dependent cardiolipin synthesis was vital when mitochondrial fitness was required, most notably during memory T cell differentiation or nutrient stress. We also found CD8+ T cell defects in a small cohort of patients with Barth syndrome, where TAFAZZIN is mutated, and in a Tafazzin-deficient mouse model. Thus, the dynamic regulation of a single mitochondrial lipid is crucial for CD8+ T cell immunity.


Subject(s)
Acyltransferases/immunology , Barth Syndrome/immunology , CD8-Positive T-Lymphocytes/immunology , Cardiolipins/immunology , Mitochondria/immunology , PTEN Phosphohydrolase/immunology , Animals , Barth Syndrome/pathology , CD8-Positive T-Lymphocytes/cytology , Cells, Cultured , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
17.
Immunity ; 53(4): 775-792.e9, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33002412

ABSTRACT

Innate lymphoid cells (ILCs) are generated early during ontogeny and persist predominantly as tissue-resident cells. Here, we examined how ILCs are maintained and renewed within tissues. We generated a single cell atlas of lung ILC2s and found that Il18r1+ ILCs comprise circulating and tissue-resident ILC progenitors (ILCP) and effector-cells with heterogeneous expression of the transcription factors Tcf7 and Zbtb16, and CD103. Our analyses revealed a continuous differentiation trajectory from Il18r1+ ST2- ILCPs to Il18r- ST2+ ILC2s, which was experimentally validated. Upon helminth infection, recruited and BM-derived cells generated the entire spectrum of ILC2s in parabiotic and shield chimeric mice, consistent with their potential role in the renewal of tissue ILC2s. Our findings identify local ILCPs and reveal ILCP in situ differentiation and tissue adaptation as a mechanism of ILC maintenance and phenotypic diversification. Local niches, rather than progenitor origin, or the developmental window during ontogeny, may dominantly imprint ILC phenotypes in adult tissues.


Subject(s)
Immunity, Innate/immunology , Lymphocytes/immunology , Lymphoid Progenitor Cells/immunology , Animals , Cell Differentiation/immunology , Cells, Cultured , Female , Humans , Interleukin-18 Receptor alpha Subunit/immunology , Lung/immunology , Mice , Mice, Inbred C57BL , Promyelocytic Leukemia Zinc Finger Protein/immunology , Signal Transduction/immunology , Single-Cell Analysis/methods , T Cell Transcription Factor 1/immunology , Transcription Factors/immunology
18.
Nat Metab ; 2(8): 703-716, 2020 08.
Article in English | MEDLINE | ID: mdl-32747793

ABSTRACT

CD8+ effector T (TE) cell proliferation and cytokine production depends on enhanced glucose metabolism. However, circulating T cells continuously adapt to glucose fluctuations caused by diet and inter-organ metabolite exchange. Here we show that transient glucose restriction (TGR) in activated CD8+ TE cells metabolically primes effector functions and enhances tumour clearance in mice. Tumour-specific TGR CD8+ TE cells co-cultured with tumour spheroids in replete conditions display enhanced effector molecule expression, and adoptive transfer of these cells in a murine lymphoma model leads to greater numbers of immunologically functional circulating donor cells and complete tumour clearance. Mechanistically, TE cells treated with TGR undergo metabolic remodelling that, after glucose re-exposure, supports enhanced glucose uptake, increased carbon allocation to the pentose phosphate pathway (PPP) and a cellular redox shift towards a more reduced state-all indicators of a more anabolic programme to support their enhanced functionality. Thus, metabolic conditioning could be used to promote efficiency of T-cell products for adoptive cellular therapy.


Subject(s)
Adoptive Transfer/methods , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Animals , Carbon/metabolism , Cell Line , Cytokines/biosynthesis , Glucose/deficiency , Glucose/pharmacology , Immunologic Memory , Lymphocyte Activation , Lymphoma/immunology , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Oxidation-Reduction , Pentose Phosphate Pathway , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays
19.
Cell Metab ; 30(2): 352-363.e8, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31130465

ABSTRACT

How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis.


Subject(s)
Macrophages/metabolism , Mitochondria/metabolism , Peptide Initiation Factors/metabolism , Polyamines/metabolism , RNA-Binding Proteins/metabolism , Animals , Cells, Cultured , Macrophage Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proteomics , Eukaryotic Translation Initiation Factor 5A
20.
Immunity ; 49(6): 1021-1033.e6, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30566880

ABSTRACT

Metabolic engagement is intrinsic to immune cell function. Prostaglandin E2 (PGE2) has been shown to modulate macrophage activation, yet how PGE2 might affect metabolism is unclear. Here, we show that PGE2 caused mitochondrial membrane potential (Δψm) to dissipate in interleukin-4-activated (M(IL-4)) macrophages. Effects on Δψm were a consequence of PGE2-initiated transcriptional regulation of genes, particularly Got1, in the malate-aspartate shuttle (MAS). Reduced Δψm caused alterations in the expression of 126 voltage-regulated genes (VRGs), including those encoding resistin-like molecule α (RELMα), a key marker of M(IL-4) cells, and genes that regulate the cell cycle. The transcription factor ETS variant 1 (ETV1) played a role in the regulation of 38% of the VRGs. These results reveal ETV1 as a Δψm-sensitive transcription factor and Δψm as a mediator of mitochondrial-directed nuclear gene expression.


Subject(s)
Cell Nucleus/drug effects , Dinoprostone/pharmacology , Gene Expression Regulation/drug effects , Macrophages/drug effects , Membrane Potential, Mitochondrial/physiology , Animals , Cell Nucleus/genetics , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Profiling , HEK293 Cells , Humans , Interleukin-4/pharmacology , Macrophage Activation/drug effects , Macrophage Activation/genetics , Macrophages/metabolism , Macrophages/ultrastructure , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...