Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
BMC Microbiol ; 23(1): 240, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644400

ABSTRACT

BACKGROUND: Fermented Aloe leaf juice is a commonly used food supplement in Japan. In a previous study, fermentation of A. arborescence juice was performed and the presence of short-chain fatty acids (SCFAs) was confirmed and quantified. Samples were collected before and after the fermentation process to be subjected, in the present study, to DNA extraction, 16S rRNA gene (V3-V4 regions) amplification, and sequencing by the next-generation Illumina MiSeq sequencer. Our work aims to analyze the sequences to assess the bacterial diversity in the juice before and after fermentation, identify the beneficial microbes responsible for the production of SCFAs, and evaluate some of the biological activities of the fermented juice. RESULTS: Data revealed the richness and diversity of the bacterial community in the fermented juice compared to the unfermented control. Relative abundance of bacterial phyla showed that the majority of the microbial community in the test samples corresponded to Pseudomonadota (unfermented; 10.4%, fermented; 76.36%), followed by Bacillota (unfermented; 4.71%, fermented; 17.13%) and then Bacteroidota (unfermented; 0.57%, fermented; 1.64%). For the fermented sample, 84% of Bacillota were lactobacilli. A hierarchically clustered heatmap revealed that Lactobacillus was the most abundant genus in both samples suggesting its involvement in the production of SCFAs. To assess potential health benefits, the anticancer efficacy of the fermented product of A. arborescens was investigated against colorectal cancer (IC50 = 3.5 µg/ml) and liver cancer (IC50 = 6.367 µg/ml) compared to the normal peripheral blood mononuclear cells (PBMCs). Flow cytometric analysis of the cell cycle pattern revealed remarkable population arrest in G0 and G1, however, the highest percentages were mainly in the G1 phase for Hep-G2 (40.1%) and HCT-116 (53.2%) cell lines. This effect was accompanied by early apoptotic profiles of HCT-116 (36.9%) and late apoptosis for Hep-G2 (17.3%). Furthermore, immunomodulatory properties demonstrated a significantly (p < 0.001) reduced percentage of induced TNF-α while enhancing IFN-γ dramatically. For antimicrobial activities, marked broad-spectrum activities were recorded against some bacterial and fungal pathogens (17-37 mm inhibition zone diameter range). CONCLUSION: Therefore, this study affords the basis of bacterial community composition in fermented A. arborescens juice as well as its potential biological benefits.


Subject(s)
Aloe , Anti-Infective Agents , Leukocytes, Mononuclear , RNA, Ribosomal, 16S/genetics , Anti-Infective Agents/pharmacology , Firmicutes , Fatty Acids, Volatile , Lactobacillus
2.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-37259460

ABSTRACT

Diseases and infections of the respiratory tract are common global causes of morbidity and mortality. Our study attempts to elucidate a novel remedy for respiratory ailments, in addition to identifying and quantifying the metabolites of Saussurea costus root extract (SCRE) using HPLC. Then, in vitro antiviral and in vivo lung protective effects were elucidated. The in vitro antiviral potential of SCRE was analyzed via plaque assay against the low pathogenic human coronavirus (HCoV-229E) and human influenza virus (H1N1). The value of the half maximal inhibitory concentrations (IC50) of SCRE against HCoV-229E and H1N1 influenza virus were 23.21 ± 1.1 and 47.6 ± 2.3 µg/mL, respectively. SCRE showed a histological improvement, namely a decrease in inducible nitric oxide synthase (iNOS) and caspase-3 immunoexpression in in vivo cyclophosphamide (CP)-induced acute lung injury (ALI). Moreover, there was a considerable decline in microRNA-let-7a gene expression and a significant rise in heme oxygenase-1 (HO-1) gene expression, with a marked decrease in the malondialdehyde (MDA) level. Molecular docking studies revealed that the major constituents of SCRE have a good affinity for caspase-3, HO-1, and iNOS proteins. In conclusion, a traditional plant SCRE could be a promising source of novel therapeutic agents for treating and protecting respiratory tract diseases. More future investigations should be carried out to reveal its efficacy clinically.

3.
Molecules ; 28(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36838572

ABSTRACT

Bioconversion of biosynthetic heterocyclic compounds has been utilized to produce new semisynthetic pharmaceuticals and study the metabolites of bioactive drugs used systemically. In this investigation, the biotransformation of natural heterocyclic alkaloid papaverine via filamentous fungi was explored. Molecular docking simulations, using protein tyrosine phosphatase 1B (PTP1B), α-glucosidase and pancreatic lipase (PL) as target enzymes, were performed to investigate the antidiabetic potential of papaverine and its metabolites in silico. The metabolites were isolated from biotransformation of papaverine with Cunninghamella elegans NRRL 2310, Rhodotorula rubra NRRL y1592, Penicillium chrysogeneum ATCC 10002 and Cunninghamella blackesleeana NRRL 1369 via reduction, demethylation, N-oxidation, oxidation and hydroxylation reactions. Seven metabolites were isolated: namely, 3,4-dihydropapaverine (metabolite 1), papaveroline (metabolite 2), 7-demethyl papaverine (metabolite 3), 6,4'-didemethyl papaverine (metabolite 4), papaverine-3-ol (metabolite 5), papaverinol (metabolite 6) and papaverinol N-oxide (metabolite 7). The structural elucidation of the metabolites was investigated with 1D and 2D NMR and mass spectroscopy (EI and ESI). The molecular docking studies showed that metabolite 7 exhibited better binding interactions with the target enzymes PTP1B, α-glucosidase and PL than did papaverine. Furthermore, papaverinol-N-oxide (7) also displayed inhibition of α-glucosidase and lipase enzymes comparable to that of their ligands (acarbose and orlistat, respectively), as unveiled with an in silico ADMET profile, molecular docking and molecular dynamics studies. In conclusion, this study provides evidence for enhanced inhibition of PTP1B, α-glucosidase and PL via some papaverine fungal transformation products and, therefore, potentially better antidiabetic and antiobesity effects than those of papaverine and other known therapeutic agents.


Subject(s)
Hypoglycemic Agents , Papaverine , Hypoglycemic Agents/pharmacology , Molecular Docking Simulation , alpha-Glucosidases/metabolism , Biotransformation , Lipase/metabolism , Oxides
4.
Molecules ; 28(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36677937

ABSTRACT

The rising prevalence of non-alcoholic fatty liver disease NAFLD has strained the healthcare system. Natural products could solve this problem, so the current study focused on the impact of G. thunbergia Thunb. against this ailment. LC-ESI-MS/MS revealed the phytochemical profile of the methanol extract from Gardenia thunbergia leaves (GME). Forty-eight compounds were tentatively identified, and stigmasterol, fucosterol, ursolic acid, and rutin were isolated. The separation of the last three compounds from this plant had not before been achieved. The anti-NAFLD effect of the methanol extract of the leaves of G. thunbergia, and its major metabolite, rutin, was assessed in mice against high-fructose diet (HFD)-induced obesity. Male mice were allocated into nine groups: (1) saline (control), (2) 30% fructose (diseased group), (3) HFD, and 10 mg/kg of simvastatin. Groups 4-6 were administered HFD and rutin 50, 75, and 100 mg/kg. Groups (7-9) were administered HFD and methanol extract of leaves 100, 200, and 300 mg/kg. Methanol extract of G. thunbergia leaves at 200 mg/kg, and rutin at 75 mg/kg significantly reduced HFD-induced increments in mice weight and hepatic damage indicators (AST and ALT), steatosis, and hypertrophy. The levels of total cholesterol, LDL-C, and triglycerides in the blood decreased. In addition, the expressions of CYP2E1, JNK1, and iNOS in the diseased mice were downregulated. This study found that GME and rutin could ameliorate NAFLD in HFD-fed mice, with results comparable to simvastatin, validating G. thunbergia's hepatoprotective effects.


Subject(s)
Gardenia , Non-alcoholic Fatty Liver Disease , Plant Extracts , Animals , Mice , Diet, High-Fat/adverse effects , Gardenia/chemistry , Liver , Methanol , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Rutin/pharmacology , Tandem Mass Spectrometry , Plant Extracts/pharmacology
5.
Nat Prod Res ; 37(10): 1687-1692, 2023 May.
Article in English | MEDLINE | ID: mdl-35876096

ABSTRACT

Biotransformation of isoniazid produced isonicotinic acid (1), isonicotinic acid N-oxide (2), and isonicotinamide (3) which were isolated by column chromatography using silica gel and Sephadex LH 20 and elucidated using various spectroscopies. This is the first report for isolation of 2. Antituberculosis activity was evaluated against Mycobacterium tuberculosis strains: drug sensitive (DS), multiple drug resistant (MDR) and extensively drug resistant (XDR). 1-3 and isoniazid showed MICs of 63.49, 0.22, 15.98 and 0.88 µM, respectively, against the DS strain. For the MDR strain, 2 and 3 exhibited MICs of 28.06 and > 1000 µM, respectively, while 1 was inactive. Moreover, 2 had an MIC of 56.19 µM against XDR strain, while 1 and 3 were inactive. Docking simulation using enoyl ACP reductase (InhA) revealed favorable protein-ligand interactions. In silico study of pharmacokinetics and hepatotoxicity predicted 1-3 to have good oral bioavailability and 2 to have a lower hepatoxicity probability than isoniazid.


Subject(s)
Isoniazid , Mycobacterium tuberculosis , Isoniazid/pharmacology , Isoniazid/chemistry , Isoniazid/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Aspergillus niger/metabolism , Isonicotinic Acids/metabolism , Oxides , Microbial Sensitivity Tests , Biotransformation , Bacterial Proteins/metabolism
6.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36297282

ABSTRACT

The search for anticancer drugs is of continuous interest. Arecoline is an alkaloid with anticancer activity. Herein, the metabolism of arecoline through fungal transformation was investigated for the discovery of potential anticancer drugs with higher activity and selectivity. Compounds 1-5 were isolated, and their structures were fully elucidated using various spectroscopic analyses, including 1D and 2D NMR, ESIMS, and HRESIMS. This is the first report for the isolation of compounds 1 and 2. An MTT assay was performed to determine the cytotoxic activity of arecoline and its metabolites in vitro using non-small-cell lung cancer A549 and leukemia K562 cell lines compared to staurosporine and doxorubicin as positive controls. For the non-small-cell lung A549 cell line, arecoline hydrobromide, staurosporine, and doxorubicin resulted in IC50 values of 11.73 ± 0.71 µM, 10.47 ± 0.64 µM, and 5.05 ± 0.13 µM, respectively, while compounds 1, 3, and 5 exhibited IC50 values of 3.08 ± 0.19 µM, 7.33 ± 0.45 µM, and 3.29 ± 0.20 µM, respectively. For the leukemia K562 cell line, the IC50 values of arecoline hydrobromide, staurosporine, and doxorubicin were 15.3 ± 1.08 µM, 5.07 ± 0.36 µM, and 6.94 ± 0.21 µM, respectively, while the IC50 values of compounds 1, 3 and 5 were 1.56 ± 0.11 µM, 3.33 ± 0.24 µM, and 2.15 ± 0.15 µM, respectively. The selectivity index value of these compounds was higher than 3. These results indicated that compounds 1, 3, and 5 are very strong cytotoxic agents with higher activity than the positive controls and good selectivity toward the tested cancer cell lines. Cell cycle arrest was then studied by flow cytometry to investigate the apoptotic mechanism. Docking simulation revealed that most compounds possessed good binding poses and favorable protein-ligand interactions with muscarinic acetylcholine receptor M3-mAChR protein. In silico study of pharmacokinetics using SwissADME predicted compounds 1-5 to be drug-like with a high probability of good oral bioavailability.

7.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36297307

ABSTRACT

Natural nitrogen heterocycles biotransformation has been extensively used to prepare synthetic drugs and explore the fate of therapeutic agents inside the body. Herein, the ability of filamentous fungi to biotransform boldine and berberine was investigated. Docking simulation studies of boldine, berberine and their metabolites on the target enzymes: telomerase (TERT) and human protein tyrosine phosphatase 1B (PTP-1B) were also performed to investigate the anticancer and antidiabetic potentials of compounds in silico. The biotransformation of boldine and berberine with Cunninghamella elegans NRRL 2310, Rhodotorula rubra NRRL y1592, Penicillium chrysogeneum ATCC 10002, Cunninghamella blackesleeana MR198 and Cunninghamella blackesleeana NRRL 1369 via demethylation, N- oxidation, glucosidation, oxidation and hydroxylation reactions produced seven metabolites, namely: 1,10-didesmethyl-boldine (1), laurolitsine (2), 1,10-didesmethyl-norboldine (3), boldine-9-O-ß-D-glucoside (4), tridesmethyl berberine (5), demethylene berberine (6), and lambertine (7). Primarily, the structures of the metabolites were established by one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) analyses and mass spectrometry. In silico molecular docking simulation of the metabolites of boldine and berberine to the proteins TERT and PTP-1B, respectively, revealed good binding MolDock scores comparable to boldine and berberine and favorable interactions with the catalytic sites of the proteins. In conclusion, this study presented promising biologically prepared nitrogen scaffolds (isoquinolines) of boldine and berberine.

8.
Phytochemistry ; 189: 112828, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34174637

ABSTRACT

Simple isoquinoline alkaloids (heliamine, dehydroheliamine), a phthalide isoquinoline alkaloid noscapine, and an aporphine alkaloid boldine are biosynthetically derived from an amino acid tyrosine. These substrates and a simple synthetic isoquinoline alkaloid (2-acetyl-7-amino-1,2,3,4-tetrahydroisoquinoline) contain an isoquinoline nucleus. The biotransformation of these substrates via reduction, oxidation, hydroxylation, and N-oxidation reactions with different microorganism produced nine metabolites, namely: N-(2-acetyl-1,2,3,4-tetrahydroisoquinolin-7-yl) acetamide (Metabolite 1), heliamine N-oxide (Metabolite 2), 6,7-dimethoxyisoquinoline (Metabolite 3), 3,4-dihydro-6,7-dimethoxy isoquinolin-1-one (Metabolite 4), heliamine (Metabolite 5), dehydroheliamine N-oxide (Metabolite 6), cotarnine (Metabolite 7), 5-hydroxy cotarnine (Metabolite 8), and boldine N-oxide (Metabolite 9). Primarily, the metabolites are structurally elucidated by one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) analyses, and high-resolution electrospray ionization mass spectrometry (HR-ESIMS). Furthermore, the substrates and their isolated metabolites are evaluated in vitro for their anti-inflammatory, antimicrobial, cytotoxicity, and anticancer activities. The in vitro studies reveal that some of the isolated compounds are potential as anti-inflammatory, antitumor, and antimicrobial leads.


Subject(s)
Alkaloids , Benzylisoquinolines , Alkaloids/pharmacology , Benzylisoquinolines/pharmacology , Isoquinolines/pharmacology , Molecular Structure , Spectrometry, Mass, Electrospray Ionization
9.
Phytochemistry ; 183: 112598, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33360527

ABSTRACT

The metabolism of papaverine, the opium benzylisoquinoline alkaloid, with Aspergillus niger NRRL 322, Beauveria bassiana NRRL 22864, Cunninghamella echinulate ATCC 18968 and Cunninghamella echinulate ATCC 1382 has resulted in O-demethylation, O-methylglucosylation and N-oxidation products. Two new metabolites (4″-O-methyl-ß-D-glucopyranosyl) 4'-demethyl papaverine and (4″-O-methyl-ß-D-glucopyranosyl) 6-demethyl papaverine, (Metabolites 5 and 6) together with 4'-O-demethylated papaverine (Metabolite 1), 3'-O-demethylated papaverine (Metabolite 2), 6-O-demethylated papaverine (Metabolite 3) and papaverine N-oxide (Metabolite 4) were isolated. The structure elucidation of the metabolites was based primarily on 1D, 2D-NMR analyses and HRMS. These metabolism results were consistent with the previous plant cell transformation studies on papaverine and isopapaverine and the microbial metabolism of papaveraldine. In silico docking studies of the metabolites using crystals of human phosphodiesterase 10a (hPDE10a) revealed that compounds 4, 1, 6, 3, and 5 possess better docking scores and binding poses with favorable interactions than the native ligand papaverine.


Subject(s)
Cunninghamella , Papaverine , Biotransformation , Computer Simulation , Humans , Phosphoric Diester Hydrolases
10.
Nat Prod Res ; 35(23): 5166-5176, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32643403

ABSTRACT

Given the lack of adequate research on Dioon spinulosum (D. spinulosum) Dyer Ex Eichler, this study was conducted focusing on different biological activities and phytochemical investigation of D. spinulosum for the first time. D. spinulosum showed strong protective activity against DNA damage and potent activity against VERO cell line. It also presented antimicrobial and hepatoprotective activity. Phytochemical investigation of the leaves resulted in isolation of two new flavonoids, apigenin 7-O-α-d-glucopyranoside (15) and amentoflavone 7-O-α-l-rhamnopyranoside (16), in addition to fifteen known compounds: phytone (1), trans-phytol (2), ß-sitosterol (3), stigmasterol (4), oliveriflavone (5), 7,4',7″,4″'-tetramethylamentoflavone (6), 7,4',7''-trimethylamentoflavone (7), scaidopitysin (8), bilobetin (9), isoginkgetin (10), aromadendrin (11), sotusflavone (12), engeletin (14) and eriocitrin (17) for the first time together with amentoflavone (13). Compounds (11) and (13) displayed very strong cytotoxic activity and showed the highest protective activity against DNA damage.


Subject(s)
Anti-Infective Agents , Zamiaceae , Antioxidants/pharmacology , Flavonoids/pharmacology , Plant Extracts/pharmacology , Plant Leaves
11.
Article in English | MEDLINE | ID: mdl-32656185

ABSTRACT

New anticancer agents are continually needed because cancerous cells continue to evolve resistance to the currently available chemotherapeutic agents. The aim of the present study was to screen, purify and characterize a hepatotoxic bacteriocin from Enterococcus species. The production of bacteriocin from the Enterococcus isolates was achieved based on their antibacterial activity against indicator reference strains. Enterococcus isolates showed a broad spectrum of antibacterial activity by forming inhibition zones with diameters ranged between 12 and 29 mm. The most potent bacteriocin producing strain was molecularly identified as Enterococcus thailandicus. The crude extracted bacteriocin was purified by cation exchange and size exclusion chromatography that resulted in 83 fractions. Among them, 18 factions were considered as bacteriocins based on their positive antibacterial effects. The anticancer effects of the purified bacteriocins were tested against HepG2 cell line. The most promising enterocin (LNS18) showed the highest anticancer effects against HepG2 cells (with 75.24% cellular inhibition percentages), with IC50 value 15.643 µM and without any significant cytotoxic effects on normal fibroblast cells (BJ ATCC® CRL-2522™). The mode of anticancer action of enterocin LNS18 against HepG2 cells could be explained by its efficacy to induce cellular ROS, decrease HepG2 CD markers and arrest cells in G0 phase. Amino acid sequence of enterocin LNS18 was determined and the deduced peptide of the structural gene showed 86 amino acids that shared 94.7% identity with enterocin NKR-5-3B from E. faecium. Enterocin LNS18 consisted of 6 α-helices; 5 circular and one linear. Model-template alignment constructed between enterocin LNS18 and NKR-5-3B revealed 95.31% identity. The predicted 3D homology model of LNS18, after circularization and release of 22 amino acids, showed the formation of a bond between Leu23 and Trp86 amino acid residues at the site of circularization. Furthermore, areas of positive charges were due to the presence of 6 lysine residues resulting in a net positive charge of +4 on the bacteriocin surface. Based on the above mentioned results, our characterized bacteriocin is a promising agent to target liver cancer without any significant toxic effects on normal cell lines.

12.
Nat Prod Commun ; 7(11): 1465-8, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23285808

ABSTRACT

The n-BuOH-soluble fraction of the MeOH-CH2Cl2 (1:1) extract of the aerial parts of Egyptian Atriplex halimus L. yielded two new flavonol glycosides, designated as atriplexoside A (1) [3'-O-methylquercetin-4'-O-beta-apiofuranoside-3-O-(6"-O-alpha-rhamnopyranosyl-beta-glucospyranoside)] and atriplexoside B (2) [3'-O-methylquercetin-4'-O-(5"-O-beta-xylopyranosyl-beta-apiofuranoside)-3-O-(6"-O-alpha-rhamnopyranosyl-beta-glucopyranoside)], together with six known compounds: two phenolic glucosides (3, 4), one ecdysteroid (5), one megastigmane (6) and two methoxylated flavonoid glycosides (7, 8). The structures of the compounds were elucidated by detailed spectroscopic analysis, including HR-ESI-MS and 2D-NMR spectroscopic data. DPPH radical scavenging, antileishmanial and anti-multidrug resistance activities were investigated using the n-BuOH-soluble fraction as well as the isolated compounds. Compound 8 (5-O-methylquercetin-3-O-(6"-O-alpha-rhamnopyranosyl-beta-glucopyranoside) presented marked DPPH radical scavenging, weak antileishmanial and anti-multidrug resistance activity while the other tested compounds showed weaker activities.


Subject(s)
Atriplex/chemistry , Flavonols/isolation & purification , Antiprotozoal Agents/isolation & purification , Atriplex/metabolism , Egypt , Flavonols/chemistry , Molecular Structure
13.
Saudi Pharm J ; 17(3): 209-15, 2009 Jul.
Article in English | MEDLINE | ID: mdl-23964163

ABSTRACT

Aloe vera L. high molecular weight fractions (AHM) containing less than 10 ppm of barbaloin and polysaccharide (MW: 1000 kDa) with glycoprotein, verectin (MW: 29 kDa), were prepared by patented hyper-dry system in combination of freeze-dry technique with microwave and far infrared radiation. AHM produced significant decrease in blood glucose level sustained for 6 weeks of the start of the study. Significant decrease in triglycerides was only observed 4 weeks after treatment and continued thereafter. No deterious effects on kidney and liver functions were apparent. Treatment of diabetic patients with AHM may relief vascular complications probably via activation of immunosystem.

14.
J Egypt Soc Parasitol ; 38(1): 141-59, 2008 Apr.
Article in English | MEDLINE | ID: mdl-19143127

ABSTRACT

Batch of freshly shed cercariae from infected laboratory bred Biomphalaria alexandrina were exposed to different sub-lethal concentrations of turmeric extract for an hour and divided into two groups. The first one was to study the ultrastructural changes induced in them using scanning electron microscopy (SEM). The second group was to study infectivity and pathogenicity of the exposed cercariae. One hundred and fifty mice were divided into 5 groups: GI: Infected by normal cercariae and served as controls; GII, GIII, GIV & GV infected by cercariae exposed to 2.5, 5, 7.5 & 10 ppm, respectively. Ten weeks post infection all animals were sacrificed and subjected to parasitologic, histopathologic and immunologic assays. SEM showed cercariae exposed to 5 ppm with minimal destruction of head spines and tail. The degenerative changes were progressively severe by increasing extract concentration to reach complete destruction of both at 10 ppm. Infectivity decreased with the increase in concentration to reach highest significance at 10 ppm. Pathogenicity or mean number of egg deposited, mean diameter of liver granulomas and level of IL-10 gene expression significantly decreased in Gs IV & V.


Subject(s)
Biomphalaria/parasitology , Curcuma/chemistry , Plant Extracts/pharmacology , Schistosoma mansoni , Schistosomiasis mansoni/parasitology , Animals , Dose-Response Relationship, Drug , Host-Parasite Interactions/drug effects , Male , Mice , Microscopy, Electron, Scanning , Parasite Egg Count , Random Allocation , Schistosoma mansoni/drug effects , Schistosoma mansoni/pathogenicity , Schistosoma mansoni/ultrastructure
15.
Phytochemistry ; 65(15): 2255-60, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15587710

ABSTRACT

Three monoamine oxidase (MAO) inhibitors were isolated from Gentiana lutea. Their structures were elucidated to be 3-3''linked-(2'-hydroxy-4-O-isoprenylchalcone)-(2'''-hydroxy-4''-O-isoprenyldihydrochalcone) (1), 2-methoxy-3-(1,1'-dimethylallyl)-6a,10a-dihydrobenzo(1,2-c)chroman-6-one and 5-hydroxyflavanone. These compounds, and the hydrolysis product of 1, displayed competitive inhibitory properties against MAO-B which was more effective than MAO-A.


Subject(s)
Brain/drug effects , Gentiana/chemistry , Mitochondria/drug effects , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Animals , Brain/enzymology , Brain/metabolism , In Vitro Techniques , Male , Mitochondria/enzymology , Molecular Structure , Monoamine Oxidase Inhibitors/isolation & purification , Plant Extracts/chemistry , Powders , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...