Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Cancer Res ; 84(7): 1065-1083, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38383964

ABSTRACT

Triple-negative breast cancer (TNBC) chemoresistance hampers the ability to effectively treat patients. Identification of mechanisms driving chemoresistance can lead to strategies to improve treatment. Here, we revealed that protein arginine methyltransferase-1 (PRMT1) simultaneously methylates D-3-phosphoglycerate dehydrogenase (PHGDH), a critical enzyme in serine synthesis, and the glycolytic enzymes PFKFB3 and PKM2 in TNBC cells. 13C metabolic flux analyses showed that PRMT1-dependent methylation of these three enzymes diverts glucose toward intermediates in the serine-synthesizing and serine/glycine cleavage pathways, thereby accelerating the production of methyl donors in TNBC cells. Mechanistically, PRMT1-dependent methylation of PHGDH at R54 or R20 activated its enzymatic activity by stabilizing 3-phosphoglycerate binding and suppressing polyubiquitination. PRMT1-mediated PHGDH methylation drove chemoresistance independently of glutathione synthesis. Rather, activation of the serine synthesis pathway supplied α-ketoglutarate and citrate to increase palmitate levels through activation of fatty acid synthase (FASN). Increased palmitate induced protein S-palmitoylation of PHGDH and FASN to further enhance fatty acid synthesis in a PRMT1-dependent manner. Loss of PRMT1 or pharmacologic inhibition of FASN or protein S-palmitoyltransferase reversed chemoresistance in TNBC. Furthermore, IHC coupled with imaging MS in clinical TNBC specimens substantiated that PRMT1-mediated methylation of PHGDH, PFKFB3, and PKM2 correlates with chemoresistance and that metabolites required for methylation and fatty acid synthesis are enriched in TNBC. Together, these results suggest that enhanced de novo fatty acid synthesis mediated by coordinated protein arginine methylation and protein S-palmitoylation is a therapeutic target for overcoming chemoresistance in TNBC. SIGNIFICANCE: PRMT1 promotes chemoresistance in TNBC by methylating metabolic enzymes PFKFB3, PKM2, and PHGDH to augment de novo fatty acid synthesis, indicating that targeting this axis is a potential treatment strategy.


Subject(s)
Phosphoglycerate Dehydrogenase , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Drug Resistance, Neoplasm , Serine/metabolism , Palmitates , Fatty Acids , Cell Line, Tumor , Protein-Arginine N-Methyltransferases/genetics , Repressor Proteins
2.
Cell Stem Cell ; 30(6): 766-780.e9, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37267913

ABSTRACT

iPSC-based drug discovery led to a phase 1/2a trial of ropinirole in ALS. 20 participants with sporadic ALS received ropinirole or placebo for 24 weeks in the double-blind period to evaluate safety, tolerability, and therapeutic effects. Adverse events were similar in both groups. During the double-blind period, muscle strength and daily activity were maintained, but a decline in the ALSFRS-R, which assesses the functional status of ALS patients, was not different from that in the placebo group. However, in the open-label extension period, the ropinirole group showed significant suppression of ALSFRS-R decline and an additional 27.9 weeks of disease-progression-free survival. iPSC-derived motor neurons from participants showed dopamine D2 receptor expression and a potential involvement of the SREBP2-cholesterol pathway in therapeutic effects. Lipid peroxide represents a clinical surrogate marker to assess disease progression and drug efficacy. Limitations include small sample sizes and high attrition rates in the open-label extension period, requiring further validation.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Indoles/adverse effects , Indoles/pharmacology , Motor Neurons
3.
Cell Rep ; 42(6): 112610, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37294636

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) produce large amounts of type 2 cytokines including interleukin-5 (IL-5) and IL-13 in response to various stimuli, causing allergic and eosinophilic diseases. However, the cell-intrinsic regulatory mechanisms of human ILC2s remain unclear. Here, we analyze human ILC2s derived from different tissues and pathological conditions and identify ANXA1, encoding annexin A1, as a commonly highly expressed gene in non-activated ILC2s. The expression of ANXA1 decreases when ILC2s activate, but it increases autonomously as the activation subsides. Lentiviral vector-based gene transfer experiments show that ANXA1 suppresses the activation of human ILC2s. Mechanistically, ANXA1 regulates the expression of the metallothionein family genes, including MT2A, which modulate intracellular zinc homeostasis. Furthermore, increased intracellular zinc levels play an essential role in the activation of human ILC2s by promoting the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways and GATA3 expression. Thus, the ANXA1/MT2A/zinc pathway is identified as a cell-intrinsic metalloregulatory mechanism for human ILC2s.


Subject(s)
Annexin A1 , Immunity, Innate , Humans , Lymphocytes/metabolism , Zinc/metabolism , Cytokines/metabolism
4.
J Bone Miner Metab ; 41(4): 470-480, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37036533

ABSTRACT

INTRODUCTION: The conditional manipulation of genes using the Cre recombinase-locus of crossover in P1 (Cre/loxP) system is an important tool for revealing gene functions and cell lineages in vivo. The outcome of this method is dependent on the performance of Cre-driver mouse strains. In most cases, Cre knock-in mice show better specificity than randomly inserted Cre transgenic mice. However, following knock-in, the expression of the original gene replaced by Cre is lost. MATERIALS AND METHODS: We generated a new differentiated osteoblast- and osteocyte-specific Cre knock-in mouse line that carries the viral T2A sequence encoding a 2A self-cleaving peptide at the end of the coding region of the dentin matrix protein 1 (Dmp1) gene accompanied by the Cre gene. RESULTS: We confirmed that Dmp1-T2A-Cre mice showed high Cre expression in osteoblasts, osteocytes, odontoblasts, and periodontal ligament cells and that the 2A self-cleaving peptide efficiently produced both Dmp1 and Cre proteins. Furthermore, unlike the Dmp1 knockout mice, homozygous Dmp1-T2A-Cre mice showed no skeletal abnormalities. Analysis using the Cre reporter strain confirmed differentiated osteoblast- and osteocyte-specific Cre-mediated recombination in the skeleton. Furthermore, recombination was also detected in some nuclei of skeletal muscle cells, spermatocytes, and intestinal cells. CONCLUSION: 2A-Cre functions effectively in vivo, and Dmp1-T2A-Cre knock-in mice are a useful tool for studying the functioning of various genes in hard tissues.


Subject(s)
Integrases , Peptides , Male , Mice , Animals , Integrases/genetics , Integrases/metabolism , Mice, Transgenic , Peptides/genetics , Cell Differentiation/genetics , Mice, Knockout , Extracellular Matrix Proteins/genetics
5.
JCI Insight ; 8(8)2023 04 24.
Article in English | MEDLINE | ID: mdl-36917179

ABSTRACT

Metabolic crosstalk from skeletal muscle to multiple organs is important for maintaining homeostasis, and its dysregulation can lead to various diseases. Chronic glucocorticoid administration often induces muscle atrophy and metabolic disorders such as diabetes and central obesity; however, the detailed underlying mechanism remains unclear. We previously reported that the deletion of glucocorticoid receptor (GR) in skeletal muscle increases muscle mass and reduces fat mass through muscle-liver-fat communication under physiological conditions. In this study, we show that muscle GR signaling plays a crucial role in accelerating obesity through the induction of hyperinsulinemia. Fat accumulation in liver and adipose tissue, muscle atrophy, hyperglycemia, and hyperinsulinemia induced by chronic corticosterone (CORT) treatment improved in muscle-specific GR-knockout (GR-mKO) mice. Such CORT-induced fat accumulation was alleviated by suppressing insulin production (streptozotocin injection), indicating that hyperinsulinemia enhanced by muscle GR signaling promotes obesity. Strikingly, glucose intolerance and obesity in ob/ob mice without CORT treatment were also improved in GR-mKO mice, indicating that muscle GR signaling contributes to obesity-related metabolic changes, regardless of systemic glucocorticoid levels. Thus, this study provides insight for the treatment of obesity and diabetes by targeting muscle GR signaling.


Subject(s)
Diabetes Mellitus , Glucose Intolerance , Hyperinsulinism , Mice , Animals , Glucocorticoids/metabolism , Glucose Intolerance/metabolism , Obesity/metabolism , Hyperinsulinism/metabolism , Corticosterone/metabolism , Receptors, Glucocorticoid/metabolism , Diabetes Mellitus/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism
6.
Antioxidants (Basel) ; 12(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36829799

ABSTRACT

Pathological examination of formalin-fixed paraffin-embedded (FFPE) needle-biopsied samples by certified pathologists represents the gold standard for differential diagnosis between ductal carcinoma in situ (DCIS) and invasive breast cancers (IBC), while information of marker metabolites in the samples is lost in the samples. Infrared laser-scanning large-area surface-enhanced Raman spectroscopy (SERS) equipped with gold-nanoparticle-based SERS substrate enables us to visualize metabolites in fresh-frozen needle-biopsied samples with spatial matching between SERS and HE staining images with pathological annotations. DCIS (n = 14) and IBC (n = 32) samples generated many different SERS peaks in finger-print regions of SERS spectra among pathologically annotated lesions including cancer cell nests and the surrounding stroma. The results showed that SERS peaks in IBC stroma exhibit significantly increased polysulfide that coincides with decreased hypotaurine as compared with DCIS, suggesting that alterations of these redox metabolites account for fingerprints of desmoplastic reactions to distinguish IBC from DCIS. Furthermore, the application of supervised machine learning to the stroma-specific multiple SERS signals enables us to support automated differential diagnosis with high accuracy. The results suggest that SERS-derived biochemical fingerprints derived from redox metabolites account for a hallmark of desmoplastic reaction of IBC that is absent in DCIS, and thus, they serve as a useful method for precision diagnosis in breast cancer.

7.
Sci Rep ; 12(1): 1299, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35079088

ABSTRACT

Recently, an international randomized controlled clinical trial showed that patients with SARS-CoV-2 infection treated orally with the 3-chymotrypsin-like protease (3CLpro) inhibitor PF-07321332 within three days of symptom onset showed an 89% lower risk of COVID-19-related hospital admission/ death from any cause as compared with the patients who received placebo. Lending support to this critically important result of the aforementioned trial, we demonstrated in our study that patients infected with a SARS-Cov-2 sub-lineage (B.1.1.284) carrying the Pro108Ser mutation in 3CLpro tended to have a comparatively milder clinical course (i.e., a smaller proportion of patients required oxygen supplementation during the clinical course) than patients infected with the same sub-lineage of virus not carrying the mutation. Characterization of the mutant 3CLpro revealed that the Kcat/Km of the 3CLpro enzyme containing Ser108 was 58% lower than that of Pro108 3CLpro. Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) revealed that the reduced activity was associated with structural perturbation surrounding the substrate-binding region of the enzyme, which is positioned behind and distant from the 108th amino acid residue. Our findings of the attenuated clinical course of COVID-19 in patients infected with SARS-CoV-2 strains with reduced 3CLpro enzymatic activity greatly endorses the promising result of the aforementioned clinical trial of the 3CLpro inhibitor.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Mutation, Missense , Patient Acuity , Adult , Aged , Amino Acid Substitution , COVID-19/enzymology , COVID-19/genetics , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Female , Humans , Male , Middle Aged
8.
Cancers (Basel) ; 13(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209885

ABSTRACT

Progesterone receptor membrane component 1 (PGRMC1) is highly expressed in various cancer cells and contributes to tumor progression. We have previously shown that PGRMC1 forms a unique heme-stacking functional dimer to enhance EGF receptor (EGFR) activity required for cancer proliferation and chemoresistance, and the dimer dissociates by carbon monoxide to attenuate its biological actions. Here, we determined that glycyrrhizin (GL), which is conventionally used to ameliorate inflammation, specifically binds to heme-dimerized PGRMC1. Binding analyses using isothermal titration calorimetry revealed that some GL derivatives, including its glucoside-derivative (GlucoGL), bind to PGRMC1 potently, whereas its aglycone, glycyrrhetinic acid (GA), does not bind. GL and GlucoGL inhibit the interaction between PGRMC1 and EGFR, thereby suppressing EGFR-mediated signaling required for cancer progression. GL and GlucoGL significantly enhanced EGFR inhibitor erlotinib- or cisplatin (CDDP)-induced cell death in human colon cancer HCT116 cells. In addition, GL derivatives suppressed the intracellular uptake of low-density lipoprotein (LDL) by inhibiting the interaction between PGRMC1 and the LDL receptor (LDLR). Effects on other pathways cannot be excluded. Treatment with GlucoGL and CDDP significantly suppressed tumor growth following xenograft transplantation in mice. Collectively, this study indicates that GL derivatives are novel inhibitors of PGRMC1 that suppress cancer progression, and our findings provide new insights for cancer treatment.

9.
Cancers (Basel) ; 13(13)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34283052

ABSTRACT

The epidermal growth factor receptor is the only available tyrosine kinase molecular target for treating oral cancer. To improve the prognosis of tongue squamous cell carcinoma (TSCC) patients, a novel molecular target for tyrosine kinases is thus needed. We examined the expression of interleukin-2-inducible T-cell kinase (ITK) using immunohistochemistry, and the biological function of ITK was investigated using biochemical, phosphoproteomic, and metabolomic analyses. We found that ITK is overexpressed in TSCC patients with poor outcomes. The proliferation of oral cancer cell lines expressing ITK via transfection exhibited significant increases in three-dimensional culture assays and murine inoculation models with athymic male nude mice as compared with mock control cells. Suppressing the kinase activity using chemical inhibitors significantly reduced the increase in cell growth induced by ITK expression. Phosphoproteomic analyses revealed that ITK expression triggered phosphorylation of a novel tyrosine residue in trifunctional purine biosynthetic protein adenosine-3, an enzyme in the purine biosynthesis pathway. A significant increase in de novo biosynthesis of purines was observed in cells expressing ITK, which was abolished by the ITK inhibitor. ITK thus represents a potentially useful target for treating TSCC through modulation of purine biosynthesis.

11.
Redox Biol ; 41: 101926, 2021 05.
Article in English | MEDLINE | ID: mdl-33752108

ABSTRACT

Chemosensitivity to cisplatin derivatives varies among individual patients with intractable malignancies including ovarian cancer, while how to unlock the resistance remain unknown. Ovarian cancer tissues were collected the debulking surgery in discovery- (n = 135) and validation- (n = 47) cohorts, to be analyzed with high-throughput automated immunohistochemistry which identified cystathionine γ-lyase (CSE) as an independent marker distinguishing non-responders from responders to post-operative platinum-based chemotherapy. We aimed to identify CSE-derived metabolites responsible for chemoresistant mechanisms: gold-nanoparticle (AuN)-based surface-enhanced Raman spectroscopy (SERS) was used to enhance electromagnetic fields which enabled to visualize multiple sulfur-containing metabolites through detecting scattering light from Au-S vibration two-dimensionally. Clear cell carcinoma (CCC) who turned out less sensitive to cisplatin than serous adenocarcinoma was classified into two groups by the intensities of SERS intensities at 480 cm-1; patients with greater intensities displayed the shorter overall survival after the debulking surgery. The SERS signals were eliminated by topically applied monobromobimane that breaks sulfane-sulfur bonds of polysulfides to result in formation of sulfodibimane which was detected at 580 cm-1, manifesting the presence of polysulfides in cancer tissues. CCC-derived cancer cell lines in culture were resistant against cisplatin, but treatment with ambroxol, an expectorant degrading polysulfides, renders the cells CDDP-susceptible. Co-administration of ambroxol with cisplatin significantly suppressed growth of cancer xenografts in nude mice. Furthermore, polysulfides, but neither glutathione nor hypotaurine, attenuated cisplatin-induced disturbance of DNA supercoiling. Polysulfide detection by on-tissue SERS thus enables to predict prognosis of cisplatin-based chemotherapy. The current findings suggest polysulfide degradation as a stratagem unlocking cisplatin chemoresistance.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cisplatin , Drug Resistance, Neoplasm , Female , Humans , Mice , Mice, Nude , Ovarian Neoplasms/drug therapy , Spectrum Analysis, Raman , Sulfides
12.
PLoS Biol ; 18(9): e3000813, 2020 09.
Article in English | MEDLINE | ID: mdl-32991574

ABSTRACT

Short-chain fatty acids (SCFAs) produced by gastrointestinal microbiota regulate immune responses, but host molecular mechanisms remain unknown. Unbiased screening using SCFA-conjugated affinity nanobeads identified apoptosis-associated speck-like protein (ASC), an adaptor protein of inflammasome complex, as a noncanonical SCFA receptor besides GPRs. SCFAs promoted inflammasome activation in macrophages by binding to its ASC PYRIN domain. Activated inflammasome suppressed survival of Salmonella enterica serovar Typhimurium (S. Typhimurium) in macrophages by pyroptosis and facilitated neutrophil recruitment to promote bacterial elimination and thus inhibit systemic dissemination in the host. Administration of SCFAs or dietary fibers, which are fermented to SCFAs by gut bacteria, significantly prolonged the survival of S. Typhimurium-infected mice through ASC-mediated inflammasome activation. SCFAs penetrated into the inflammatory region of the infected gut mucosa to protect against infection. This study provided evidence that SCFAs suppress Salmonella infection via inflammasome activation, shedding new light on the therapeutic activity of dietary fiber.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , Fatty Acids, Volatile/metabolism , Inflammasomes/immunology , Inflammasomes/metabolism , Receptors, G-Protein-Coupled/metabolism , Salmonella Infections/prevention & control , Animals , CARD Signaling Adaptor Proteins/genetics , Female , Gastrointestinal Microbiome/immunology , HEK293 Cells , Humans , Immunity, Innate/physiology , Macrophage Activation/genetics , Macrophage Activation/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Binding , Receptors, G-Protein-Coupled/genetics , Salmonella Infections/genetics , Salmonella Infections/immunology , Salmonella Infections/metabolism , Salmonella typhimurium/immunology , U937 Cells
13.
Cancers (Basel) ; 12(9)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878320

ABSTRACT

Pancreatic cancer (PC) is among the most lethal malignancies due to an often delayed and difficult initial diagnosis. Therefore, the development of a novel, early stage, diagnostic PC marker in liquid biopsies is of great significance. In this study, we analyzed the differential glycomic profiling of extracellular vesicles (EVs) derived from serum (two cohorts including 117 PC patients and 98 normal controls) using lectin microarray. The glyco-candidates of PC-specific EVs were quantified using a high-sensitive exosome-counting system, ExoCounter. An absolute quantification system for altered glycan-containing EVs elevated in PC serum was established. EVs recognized by O-glycan-binding lectins ABA or ACA were identified as candidate markers by lectin microarray. Quantitative analyses using ExoCounter revealed that the ABA- or ACA-positive EVs were significantly increased in the culture of PC cell lines or in the serum of PC patients including carbohydrate antigen 19-9 negative patients with high area under curve values. The elevated numbers of EVs in PC serum returned to normal levels after pancreatectomy. Histological examination confirmed that the tumors stained with ABA/ACA. These specific EVs with O-glycans recognized by ABA/ACA are elevated in PC sera and can act as potential biomarkers in a liquid biopsy for PC patients screening.

14.
Commun Biol ; 3(1): 479, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32887925

ABSTRACT

Progesterone receptor membrane associated component 1 (PGRMC1) exhibits haem-dependent dimerization on cell membrane and binds to EGF receptor and cytochromes P450 to regulate cancer proliferation and chemoresistance. However, its physiological functions remain unknown. Herein, we demonstrate that PGRMC1 is required for adipogenesis, and its expression is significantly enhanced by insulin or thiazolidine, an agonist for PPARγ. The haem-dimerized PGRMC1 interacts with low-density lipoprotein receptors (VLDL-R and LDL-R) or GLUT4 to regulate their translocation to the plasma membrane, facilitating lipid uptake and accumulation, and de-novo fatty acid synthesis in adipocytes. These events are cancelled by CO through interfering with PGRMC1 dimerization. PGRMC1 expression in mouse adipose tissues is enhanced during obesity induced by a high fat diet. Furthermore, adipose tissue-specific PGRMC1 knockout in mice dramatically suppressed high-fat-diet induced adipocyte hypertrophy. Our results indicate a pivotal role of PGRMC1 in developing obesity through its metabolic regulation of lipids and carbohydrates in adipocytes.


Subject(s)
Adipocytes/metabolism , Disease Progression , Lipid Metabolism , Membrane Proteins/metabolism , Obesity/pathology , Receptors, Progesterone/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Animals , Carbon Monoxide/pharmacology , Cell Differentiation/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Hypertrophy , Lipid Metabolism/drug effects , Lipoproteins, LDL/metabolism , Lipoproteins, VLDL/metabolism , Mice , Models, Biological , Obesity/blood , Protein Transport/drug effects , Receptors, LDL/metabolism
17.
J Proteome Res ; 19(6): 2516-2524, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32338917

ABSTRACT

Extracellular vesicles such as exosomes are generally covered with an array of glycans, which are controlled by the host-cell glyco-synthetic machinery, similar to secreted and membrane glycoproteins. Several exosome subpopulations classified by their tetraspanin expression have been investigated in the context of diseases. However, a comparative analysis of their glycomics has never been attempted. Herein, we report a method for the comparative glycomic analysis of exosome subpopulations among pancreatic cancer cell lines. Glycomic profiles were obtained for extracellular vesicles, secreted glycoproteins, and membrane glycoproteins from eight cell lines. Statistical analyses revealed high populations of PHA-L-binding proteins in the vesicles. The surfaces of extracellular vesicles were labeled with Cy3 and captured by magnetic beads with antibodies against tetraspanins (CD9, CD63, and CD81). The coprecipitated vesicles were lysed and subjected to a lectin microarray analysis. A hierarchical clustering analysis using 19 glycomic profiles confirmed that most subpopulations, except CD81-positive exosomes, could be distinguished according to the host-cell species. Principal component analysis and subsequent lectin-affinity capturing of intact exosomes highlighted that CD81-positive exosomes preferentially expressed not PHA-L- but LEL-binding proteins on their surfaces. These data suggested that exosomal glycomics depended on the host-cell type and subpopulation.


Subject(s)
Exosomes , Extracellular Vesicles , Pancreatic Neoplasms , Cell Line , Glycomics , Humans
18.
NPJ Sci Food ; 4: 4, 2020.
Article in English | MEDLINE | ID: mdl-32133417

ABSTRACT

Sesamin [(7α,7'α,8α,8'α)-3,4:3',4'-bis(methylenedioxy)-7,9':7',9-diepoxylignane] is a major lignan in sesame seeds. Sesamin is converted to the catechol metabolite, SC1 [(7α,7'α,8α,8'α)-3',4'-methylenedioxy-7,9':7',9-diepoxylignane-3,4-diol] with anti-inflammatory effects after oral administration. However, its molecular target remains unknown. Analysis using high-performance affinity nanobeads led to the identification of annexin A1 (ANX A1) as an SC1-binding protein. SC1 was found to bind to the annexin repeat 3 region of ANX A1 with a high-affinity constant (Kd = 2.77 µmol L-1). In U937 cells, SC1 exhibited an anti-inflammatory effect dependent on ANX A1. Furthermore, administration of sesamin or SC1 attenuated carbon tetrachloride-induced liver damage in mice and concurrently suppressed inflammatory responses dependent on ANX A1. The mechanism involved SC1-induced ANX A1 phosphorylation at serine 27 that facilitates extracellular ANX A1 release. Consequently, the ANX A1 released into the extracellular space suppressed the production of tumor necrosis factor α. This study demonstrates that ANX A1 acts as a pivotal target of sesamin metabolites to attenuate inflammatory responses.

19.
JCI Insight ; 4(22)2019 11 14.
Article in English | MEDLINE | ID: mdl-31723053

ABSTRACT

Although oxidative stress plays central roles in postischemic renal injury, region-specific alterations in energy and redox metabolism caused by short-duration ischemia remain unknown. Imaging mass spectrometry enabled us to reveal spatial heterogeneity of energy and redox metabolites in the postischemic murine kidney. After 10-minute ischemia and 24-hour reperfusion (10mIR), in the cortex and outer stripes of the outer medulla, ATP substantially decreased, but not in the inner stripes of the outer medulla and inner medulla. 10mIR caused renal injury with elevation of fractional excretion of sodium, although histological damage by oxidative stress was limited. Ischemia-induced NADH elevation in the cortex indicated prolonged production of reactive oxygen species by xanthine oxidase (XOD). However, consumption of reduced glutathione after reperfusion suggested the amelioration of oxidative stress. An XOD inhibitor, febuxostat, which blocks the degradation pathway of adenine nucleotides, promoted ATP recovery and exerted renoprotective effects in the postischemic kidney. Because effects of febuxostat were canceled by silencing of the hypoxanthine phosphoribosyl transferase 1 gene in cultured tubular cells, mechanisms for the renoprotective effects appear to involve the purine salvage pathway, which uses hypoxanthine to resynthesize adenine nucleotides, including ATP. These findings suggest a novel therapeutic approach for acute ischemia/reperfusion renal injury with febuxostat through salvaging high-energy adenine nucleotides.


Subject(s)
Acute Kidney Injury , Adenine Nucleotides , Enzyme Inhibitors/pharmacology , Reperfusion Injury , Xanthine Oxidase/antagonists & inhibitors , Acute Kidney Injury/metabolism , Acute Kidney Injury/physiopathology , Adenine Nucleotides/analysis , Adenine Nucleotides/metabolism , Animals , Febuxostat/pharmacology , Kidney/chemistry , Kidney/drug effects , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/physiopathology
20.
Cell Rep ; 28(1): 145-158.e9, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31269436

ABSTRACT

Hematopoietic stem cells (HSCs) maintain lifelong hematopoiesis by remaining quiescent in the bone marrow niche. Recapitulation of a quiescent state in culture has not been achieved, as cells rapidly proliferate and differentiate in vitro. After exhaustive analysis of different environmental factor combinations and concentrations as a way to mimic physiological conditions, we were able to maintain engraftable quiescent HSCs for 1 month in culture under very low cytokine concentrations, hypoxia, and very high fatty acid levels. Exogenous fatty acids were required likely due to suppression of intrinsic fatty acid synthesis by hypoxia and low cytokine conditions. By contrast, high cytokine concentrations or normoxia induced HSC proliferation and differentiation. Our culture system provides a means to evaluate properties of steady-state HSCs and test effects of defined factors in vitro under near-physiological conditions.


Subject(s)
Cell Culture Techniques/methods , Cytokines/pharmacology , Fatty Acids/pharmacology , Hematopoiesis/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Animals , Apoptosis , Bone Marrow/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Hypoxia/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cholesterol/pharmacology , Gene Ontology , Hematopoiesis/physiology , Hematopoietic Stem Cells/metabolism , Humans , Insulin/pharmacology , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Single-Cell Analysis , Stem Cell Factor/pharmacology , Stem Cell Niche/drug effects , Stem Cell Niche/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...