Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Addit Manuf ; 61: None, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-37842178

ABSTRACT

Producing lightweight structures with high weight-specific strength and stiffness, self-healing abilities, and recyclability, is highly attractive for engineering applications such as aerospace, biomedical devices, and smart robots. Most self-healing polymer systems used to date for mechanical components lack 3D printability and satisfactory load-bearing capacity. Here, we report a new self-healable polymer composite for Digital Light Processing 3D Printing, by combining two monomers with distinct mechanical characteristics. It shows a desirable and superior combination of properties among 3D printable self-healing polymers, with tensile strength and elastic modulus up to 49 MPa and 810 MPa, respectively. Benefiting from dual dynamic bonds between the linear chains, a healing efficiency of above 80% is achieved after heating at a mild temperature of 60 °C without additional solvents. Printed objects are also endowed with multi-materials assembly and recycling capabilities, allowing robotic components to be easily reassembled or recycled after failure. Mechanical properties and deformation behaviour of printed composites and lattices can be tuned significantly to suit various practical applications by altering formulation. Lattice structures with three different architectures were printed and tested in compression: honeycomb, re-entrant, and chiral. They can regain their structural integrity and stiffness after damage, which is of great value for robotic applications. This study extends the performance space of composites, providing a pathway to design printable architected materials with simultaneous mechanical robustness/healability, efficient recoverability, and recyclability.

2.
Phys Fluids (1994) ; 33(9): 092109, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34552316

ABSTRACT

Noninvasive ocular diagnostics demonstrate a propensity for droplet generation and present a potential pathway of distribution for pathogens such as the severe acute respiratory syndrome coronavirus 2. High-speed images of the eye subjected to air puff tonometry (glaucoma detection) reveal three-dimensional, spatiotemporal interaction between the puff and tear film. The interaction finally leads to the rupture and breakup of the tear film culminating into sub-millimeter sized droplet projectiles traveling at speeds of 0.2 m/s. The calculated droplet spread radius ( ∼ 0.5 m) confirms the likelihood of the procedure to generate droplets that may disperse in air as well as splash on instruments, raising the potential of infection. We provide a detailed physical exposition of the entire procedure using high fidelity experiments and theoretical modeling. We conclude that air puff induced corneal deformation and subsequent capillary waves lead to flow instabilities (Rayleigh-Taylor, Rayleigh-Plateau) that lead to tear film ejection, expansion, stretching, and subsequent droplet formation.

3.
J Colloid Interface Sci ; 600: 1-13, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34022720

ABSTRACT

HYPOTHESIS: The droplets ejected from an infected host during expiratory events can get deposited as fomites on everyday use surfaces. Recognizing that these fomites can be a secondary route for disease transmission, exploring the deposition pattern of such sessile respiratory droplets on daily-use substrates thus becomes crucial. EXPERIMENTS: The used surrogate respiratory fluid is composed of a water-based salt-protein solution, and its precipitation dynamics is studied on four different substrates (glass, ceramic, steel, and PET). For tracking the final deposition of viruses in these droplets, 100 nm virus emulating particles (VEP) are used and their distribution in dried-out patterns is identified using fluorescence and SEM imaging techniques. FINDINGS: The final precipitation pattern and VEP deposition strongly depend on the interfacial transport processes, edge evaporation, and crystallization dynamics. A constant contact radius mode of evaporation with a mixture of capillary and Marangoni flows results in spatio-temporally varying edge deposits. Dendritic and cruciform-shaped crystals are majorly seen in all substrates except on steel, where regular cubical crystals are formed. The VEP deposition is higher near the three-phase contact line and crystal surfaces. The results showed the role of interfacial processes in determining the initiation of fomite-type infection pathways in the context of COVID-19.


Subject(s)
COVID-19 , Fomites , Crystallization , Humans , SARS-CoV-2 , Sodium Chloride
4.
Soft Matter ; 17(6): 1487-1496, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33459336

ABSTRACT

Strategic control of evaporation dynamics can help control oscillation modes and internal flow field in an oscillating sessile droplet. This article presents the study of an oscillating droplet on a bio-inspired "sticky" surface to better understand the nexus between the modes of evaporation and oscillation. Oscillation in droplets can be characterized by the number of nodes forming on the surface and is referred to as the mode of oscillation. An evaporating sessile droplet under constant periodic perturbation naturally self-tunes between different oscillation modes depending on its geometry. The droplet geometry evolves according to the mode of evaporation controlled by substrate topography. We use a bio-inspired, rose patterned, "sticky" hydrophobic substrate to perpetually pin the contact line of the droplet in order to hence achieve a single mode of evaporation for most of the droplet's lifetime. This allows the prediction of experimentally observed oscillation mode transitions at different excitation frequencies. We present simple scaling arguments to predict the velocity of the internal flow induced by the oscillation. The findings are beneficial to applications which seek to tailor energy and mass transfer rates across liquid droplets by using bio-inspired surfaces.

5.
J Glaucoma ; 29(11): 1006-1016, 2020 11.
Article in English | MEDLINE | ID: mdl-32947358

ABSTRACT

PURPOSE: To quantify aerosol and droplets generated during noncontact tonometry (NCT) and assess the spread distance of the same. METHODOLOGY: This was an experimental study on healthy human volunteers (n=8 eyes). In an experimental setup, NCT was performed on eyes (n=8) of human volunteers under normal settings, with a single and 2 drops of lubricant. High-speed shadowgraphy, frontal lighting technique, and fluorescein analysis were used to detect the possible generation of any droplets and aerosols. Mathematical computation of the spread of the droplets was then performed. RESULTS: In a natural setting, there was no droplet or aerosol production. Minimal splatter along with droplet ejection was observed when 1 drop of lubricant was used before NCT. When 2 drops of lubricant were instilled, a significant amount of fluid ejection in the form of a sheet that broke up into multiple droplets was observed. Some of these droplets traversed back to the tonometer. Droplets ranging from 100 to 500 µm in diameter were measured. CONCLUSIONS: There was no droplet generation during NCT performed in a natural setting. However, NCT should be avoided in conditions with high-tear volume (natural or artificial) as it would lead to droplet spread and tactile contamination.


Subject(s)
Aerosols/chemistry , Betacoronavirus , Coronavirus Infections/transmission , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Intraocular Pressure/physiology , Pneumonia, Viral/transmission , Tears/chemistry , Tonometry, Ocular/instrumentation , Adolescent , Adult , COVID-19 , Environmental Monitoring , Female , Fluorescein/administration & dosage , Fluorescent Dyes/administration & dosage , Humans , Lubricant Eye Drops/administration & dosage , Male , Optical Imaging , Pandemics , SARS-CoV-2 , Young Adult
6.
J Cataract Refract Surg ; 46(10): 1416-1421, 2020 10.
Article in English | MEDLINE | ID: mdl-32675657

ABSTRACT

PURPOSE: To quantify the atomization of liquid over the cornea during flap creation using microkeratome using high-speed shadowgraphy. SETTING: Laboratory study. DESIGN: Laboratory investigational study. METHOD: In an experimental setup, flap creation was performed on enucleated goat's eyes (n = 8) mounted on a stand using One Use-Plus SBK Moria microkeratome (Moria SA) to assess the spread of aerosols and droplets using high-speed shadowgraphy. Two conditions were computed. A constant airflow assumed uniform air velocity throughout the room. A decaying jet assumed that local air velocity at the site of measurements was smaller than the exit velocity from the air duct. RESULTS: With the advancement of the microkeratome across the wet corneal surface, the atomization of a balanced salt solution was recorded on shadowgraphy. The minimum droplet size was ∼90 µm. The maximum distance traversed was ∼1.8 m and ∼1.3 m assuming a constant airflow (setting of refractive surgery theater) and decaying jet condition (setting of an operating theater with air-handling unit), respectively. CONCLUSIONS: The microkeratome-assisted LASIK flap creation seemed to cause spread of droplets. The droplet diameters and velocities did not permit the formation of aerosols. Therefore, the risk of transmission of the virus to the surgeon and surgical personnel due to the microkeratome procedure seemed to be low.


Subject(s)
Aerosols/adverse effects , Betacoronavirus , Coronavirus Infections/epidemiology , Disease Transmission, Infectious/prevention & control , Keratomileusis, Laser In Situ/methods , Lasers, Excimer/therapeutic use , Myopia/surgery , Pneumonia, Viral/epidemiology , Animals , COVID-19 , Corneal Stroma/surgery , Coronavirus Infections/transmission , Goats , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2 , Surgical Flaps
7.
J Cataract Refract Surg ; 46(9): 1297-1301, 2020 09.
Article in English | MEDLINE | ID: mdl-32649436

ABSTRACT

PURPOSE: To study propensity of aerosol and droplet generation during phacoemulsification using high-speed shadowgraphy and quantify its spread amid COVID-19 pandemic. SETTING: Aerosol and droplet quantification laboratory. DESIGN: Laboratory study. METHODS: In an experimental set-up, phacoemulsification was performed on enucleated goat eyes and cadaveric human corneoscleral rims mounted on an artificial anterior chamber. Standard settings for sculpt and quadrant removal mode were used on Visalis 100 (Carl Zeiss Meditec AG). Microincision and standard phacoemulsification were performed using titanium straight tips (2.2 mm and 2.8 mm in diameter). The main wound incisions were titrated equal to and larger than the sleeve size. High-speed shadowgraphy technique was used to detect the possible generation of any droplets and aerosols. The visualization and quantification of size of the aerosols and droplets along with calculation of their spread were the main outcome measures. RESULTS: In longitudinal phacoemulsification using a peristaltic pump device with a straight tip, no aerosol generation was seen in a closed chamber. In larger wounds, there was a slow leak at the main wound. The atomization of balanced salt solution was observed only when the phacoemulsification tip was completely exposed next to the ocular surface. Under this condition, the nominal size of the droplet was approximately 50 µm, and the maximum calculated spread was 1.3 m. CONCLUSIONS: There was no visible aerosol generation during microincision or standard phacoemulsification. Phacoemulsification is safe to perform in the COVID-19 era by taking adequate precautions against other modes of transmission.


Subject(s)
Aerosols/chemistry , Betacoronavirus , Coronavirus Infections/transmission , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Microbubbles , Phacoemulsification/methods , Pneumonia, Viral/transmission , Animals , COVID-19 , Coronavirus Infections/epidemiology , Diagnostic Imaging/methods , Goats , Models, Animal , Ophthalmologists , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2
8.
Phys Fluids (1994) ; 32(6): 063309, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32624650

ABSTRACT

In this paper, we develop a first principles model that connects respiratory droplet physics with the evolution of a pandemic such as the ongoing Covid-19. The model has two parts. First, we model the growth rate of the infected population based on a reaction mechanism. The advantage of modeling the pandemic using the reaction mechanism is that the rate constants have sound physical interpretation. The infection rate constant is derived using collision rate theory and shown to be a function of the respiratory droplet lifetime. In the second part, we have emulated the respiratory droplets responsible for disease transmission as salt solution droplets and computed their evaporation time, accounting for droplet cooling, heat and mass transfer, and finally, crystallization of the dissolved salt. The model output favourably compares with the experimentally obtained evaporation characteristics of levitated droplets of pure water and salt solution, respectively, ensuring fidelity of the model. The droplet evaporation/desiccation time is, indeed, dependent on ambient temperature and is also a strong function of relative humidity. The multi-scale model thus developed and the firm theoretical underpinning that connects the two scales-macro-scale pandemic dynamics and micro-scale droplet physics-thus could emerge as a powerful tool in elucidating the role of environmental factors on infection spread through respiratory droplets.

9.
Phys Chem Chem Phys ; 22(26): 14570-14578, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32596709

ABSTRACT

Mixing at small fluidic length scales is especially challenging in viscous and non-volatile droplets frequently encountered in bio-chemical assays. In situ methods of mixing, which depend on diffusion or evaporation-driven capillary flow, are typically slow and inefficient, while thermal or electro-capillary methods that are either complicated to implement or may cause sample denaturing. This article demonstrates an enhanced mixing timescale in a sessile droplet of glycerol by simply introducing a droplet of ethanol in its near vicinity. The fast evaporation of ethanol introduces molecules in the proximity of the glycerol droplet, which are preferentially adsorbed (more on the side closer to ethanol) creating a gradient of surface tension driving the Marangoni convection in the droplet. We conclusively show that for the given volume of the droplet, the mixing time reduces by ∼10 hours due to the vapour-mediated Marangoni convection. Simple scaling arguments are used to predict the enhancement of the mixing timescale. Experimental evidence obtained from fluorescence imaging is used to quantify mixing and validate the analytical results. This is the first proof of concept of enhanced mixing in a viscous, sessile droplet using the vapour mediation technique.

10.
Langmuir ; 36(5): 1279-1287, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-31972089

ABSTRACT

In this work, we showcase a mechanism of rapid and focused solvent depletion using vapor-mediated interaction that can nonintrusively cleave a sessile water droplet reminiscent of Moses parting the Red Sea. The Marangoni effect is induced by the differential adsorption of vapor from a nearby pendant droplet of ethanol, leading to an exponential increase in surface velocity inside the water droplet. The Marangoni convection leads to the drainage of liquid from the central section of the water droplet and consequently splits it. By encoding the position of the ethanol (vertical as well as horizontal) droplet, an array of liquid motion is observed (split, shift, and slosh) in the water droplet. This method is further extended to nanocolloidal systems, where the liquid motion can be exploited to generate a wide gamut of deposit patterns ranging from uniform precipitate to sporadic islands without resorting to the more traditional evaporation-driven capillary flows ("coffee stains") or custom engineering of the shape of the nanoparticles. We further provide a detailed exposition of the physical mechanisms responsible for the splitting of the liquid drop and consequent particle deposition. The concept can be extended to liquid actuation in open channel microfluidic chips and surface patterning as in medical diagnostics, optoelectronics, and thermal management.

11.
Phys Fluids (1994) ; 32(12): 123317, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33746480

ABSTRACT

We isolate a nano-colloidal droplet of surrogate mucosalivary fluid to gain fundamental insights into airborne nuclei's infectivity and viral load distribution during the COVID-19 pandemic. The salt-water solution containing particles at reported viral loads is acoustically trapped in a contactless environment to emulate the drying, flow, and precipitation dynamics of real airborne droplets. Similar experiments validate observations with the surrogate fluid with samples of human saliva samples from a healthy subject. A unique feature emerges regarding the final crystallite dimension; it is always 20%-30% of the initial droplet diameter for different sizes and ambient conditions. Airborne-precipitates nearly enclose the viral load within its bulk while the substrate precipitates exhibit a high percentage (∼80-90%) of exposed virions (depending on the surface). This work demonstrates the leveraging of an inert nano-colloidal system to gain insights into an equivalent biological system.

12.
J Colloid Interface Sci ; 541: 348-355, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30708250

ABSTRACT

HYPOTHESIS: Sessile droplets of contrasting volatilities can communicate via long range (∼O (1) mm) vapour-mediated interactions which allow the remote control of the flow driven self-assembly of nanoparticles in the drop of lower volatility. This allows morphological control of the buckling instability observed in evaporating nanofluid droplets. EXPERIMENTS: A nanofluid droplet is dispensed adjacent to an ethanol droplet. Asymmetrical adsorption induced Marangoni flow (∼O (1) mm/s) internally segregates the particle population. Particle aggregation occurs preferentially on one side of the droplet leaving the other side to develop a relatively weaker shell which buckles under the effect of evaporation driven capillary pressure. FINDINGS: The inter-droplet distance is varied to demonstrate the effect on the precipitate shape (flatter to dome shaped) and the location of the buckling (top to side). In addition to being a simple template for hierarchical self-assembly, the presented exposition also promises to enhance mixing rates (∼1000 times) in droplet-based bioassays with minimal contamination.

13.
Langmuir ; 34(42): 12642-12652, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30257088

ABSTRACT

This work explores the physical mechanism that can be used to control the final residual pattern of nanoparticles obtained from an evaporating-oscillating sessile droplet. To that end, the substrate is vibrated in the vertical direction with a constant amplitude, while the frequency of excitation is varied. It is found that evaporation progressively shifts the mode number of the oscillating droplet to lower values, while the oscillations enhance the rate of solvent loss, causing a reduction in the droplet lifetime. The coupling between evaporation and oscillation drives the internal flow through two distinct regimes. Initially, oscillation leads to inner flow recirculation, which delays the evaporation driven edge deposition of particles. Subsequently at lower modes, caused by solvent depletion, the effect of oscillation is weakened, which allows evaporation-driven flow to gain prominence and thus transport the dispersed particles to the contact line. We demonstrate here how this delay in particle migration can be controlled to engineer morphological changes in not just the resulting macroscopic aspect of the deposit but also its microstructure. We especially focus on the relatively unexplored microstructural pattern of deposits from evaporating-oscillating droplets. Using scanning electron micrograph and Voronoi tessellation of the final deposit, we show unique spatial variation in particle ordering at macro-micro length scales. Thus, droplet oscillation tunes the spatial extent of the particle ordering crucial in applications like photonic crystals and photonic glass.

14.
Langmuir ; 34(29): 8423-8442, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29470090

ABSTRACT

Evaporating sessile functional droplets act as the fundamental building block that controls the cumulative outcome of many industrial and biological applications such as surface patterning, 3D printing, photonic crystals, and DNA sequencing, to name a few. Additionally, a drying single sessile droplet forms a high-throughput processing technique using low material volume which is especially suitable for medical diagnosis. A sessile droplet also provides an elementary platform to study and analyze fundamental interfacial processes at various length scales ranging from macroscopically observable wetting and evaporation to microfluidic transport to interparticle forces operating at a nanometric length scale. As an example, to ascertain the quality of 3D printing we must understand the fundamental interfacial processes at the droplet scale. In this article, we review the coupled physics of evaporation flow-contact-line-driven particle transport in sessile colloidal droplets and provide methodologies to control the same. Through natural alterations in droplet vaporization, one can change the evaporative pattern and contact line dynamics leading to internal flow which will modulate the final particle assembly in a nontrivial fashion. We further show that control over particle transport can also be exerted by external stimuli which can be thermal, mechanical oscillations, vapor confinement (walled or a fellow droplet), or chemical (surfactant-induced) in nature. For example, significant augmentation of an otherwise evaporation-driven particle transport in sessile droplets can be brought about simply through controlled interfacial oscillations. The ability to control the final morphologies by manipulating the governing interfacial mechanisms in the precursor stages of droplet drying makes it perfectly suitable for fabrication-, mixing-, and diagnostic-based applications.

15.
Langmuir ; 34(5): 2109-2120, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29345953

ABSTRACT

Nanoscale engineering has traditionally adopted the chemical route of synthesis or optochemical techniques such as lithography requiring large process times, expensive equipment, and an inert environment. Directed self-assembly using evaporation of nanocolloidal droplet can be a potential low-cost alternative across various industries ranging from semiconductors to biomedical systems. It is relatively simple to scale and reorient the evaporation-driven internal flow field in an evaporating droplet which can direct dispersed matter into functional agglomerates. The resulting functional precipitates not only exhibit macroscopically discernible changes but also nanoscopic variations in the particulate assembly. Thus, the evaporating droplet forms an autonomous system for nanoscale engineering without the need for external resources. In this article, an indigenous technique of interfacial re-engineering, which is both simple and inexpensive to implement, is developed. Such re-engineering widens the horizon for surface patterning previously limited by the fixed nature of the droplet interface. It involves handprinting hydrophobic lines on a hydrophilic substrate to form a confinement of any selected geometry using a simple document stamp. Droplets cast into such confinements get modulated into a variety of shapes. The droplet shapes control the contact line behavior, evaporation dynamics, and complex internal flow pattern. By exploiting the dynamic interplay among these variables, we could control the deposit's macro- as well as nanoscale assembly not possible with simple circular droplets. We provide a detailed mechanism of the coupling at various length scales enabling a predictive capability in custom engineering, particularly useful in nanoscale applications such as photonic crystals.

16.
Langmuir ; 32(42): 10977-10986, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27700116

ABSTRACT

Surface patterning with functional colloids is an important research area because of its widespread applicability in domains such as nanoelectronics, pharmaceutics, semiconductors, and photovoltaics among others. In this endeavor, we propose a low-cost patterning technique that aspires to eliminate the more expensive methodologies that are presently in practice. Using a simple document stamp on which patterns of any geometry can be embossed, we are able to print 2D millimeter-scale "wall-less confinement" using an ink-based hydrophobic fence on any plasma-treated superhydrophilic surface. The confinement is subsequently filled with nanocolloidal liquid(s). Using confinement geometry, we are able to control the 3D shape of the droplet to exhibit multiple interfacial curvatures. The droplet in the "wall-less confinements" evaporates naturally, exhibiting unique geometry (curvature)-induced flow structures that induce the nanoparticles to self-assemble into functional patterns. We have also shown that by modifying the geometry of the pattern, evaporation, flow, and particle deposition dynamics get altered, leading to precipitate topologies from macro- to microscales. We present two such geometrical designs that demonstrate the capability of modifying both macroscopic and microscopic features of the final precipitate. We have also provided a description of the physical mechanisms of the drying process by resolving the unique flow pattern using a combination of imaging and microparticle image velocimetry. These provide insights into the coupled dynamics of evaporation and flow responsible for the evolution of particle deposition pattern. Precipitate characterization using scanning electron microscopy and dark-field microscopy highlights the transformation in the deposit morphology.

SELECTION OF CITATIONS
SEARCH DETAIL
...