Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(14): e34587, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39130445

ABSTRACT

The loss of upper and lower motor neurons, and their axons is central to the loss of motor function and death in amyotrophic lateral sclerosis (ALS). Due to the diverse range of genetic and environmental factors that contribute to the pathogenesis of ALS, there have been difficulties in developing effective therapies for ALS. One emerging dichotomy is that protection of the neuronal cell soma does not prevent axonal vulnerability and degeneration, suggesting the need for targeted therapeutics to prevent axon degeneration. Post-translational modifications of protein acetylation can alter the function, stability and half-life of individual proteins, and can be enzymatically modified by histone acetyltransferases (HATs) and histone deacetyltransferases (HDACs), which add, or remove acetyl groups, respectively. Maintenance of post-translational microtubule acetylation has been suggested as a mechanism to stabilize axons, prevent axonal loss and neurodegeneration in ALS. This study used an orally dosed potent HDAC6 inhibitor, ACY-738, prevent deacetylation and stabilize microtubules in the mSOD1G93A mouse model of ALS. Co-treatment with riluzole was performed to determine any effects or drug interactions and potentially enhance preclinical research translation. This study shows ACY-738 treatment increased acetylation of microtubules in the spinal cord of mSOD1G93A mice, reduced lower motor neuron degeneration in female mice, ameliorated reduction in peripheral nerve axon puncta size, but did not prevent overt motor function decline. The current study also shows peripheral nerve axon puncta size to be partially restored after treatment with riluzole and highlights the importance of co-treatment to measure the potential effects of therapeutics in ALS.

2.
Front Aging Neurosci ; 14: 1025473, 2022.
Article in English | MEDLINE | ID: mdl-36688174

ABSTRACT

Acetylation is a key post-translational modification (PTM) involved in the regulation of both histone and non-histone proteins. It controls cellular processes such as DNA transcription, RNA modifications, proteostasis, aging, autophagy, regulation of cytoskeletal structures, and metabolism. Acetylation is essential to maintain neuronal plasticity and therefore essential for memory and learning. Homeostasis of acetylation is maintained through the activities of histone acetyltransferases (HAT) and histone deacetylase (HDAC) enzymes, with alterations to these tightly regulated processes reported in several neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Both hyperacetylation and hypoacetylation can impair neuronal physiological homeostasis and increase the accumulation of pathophysiological proteins such as tau, α-synuclein, and Huntingtin protein implicated in AD, PD, and HD, respectively. Additionally, dysregulation of acetylation is linked to impaired axonal transport, a key pathological mechanism in ALS. This review article will discuss the physiological roles of protein acetylation and examine the current literature that describes altered protein acetylation in neurodegenerative disorders.

3.
Biochem Biophys Rep ; 28: 101168, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34825068

ABSTRACT

PURPOSE: This current study investigated the effect of metformin treatment on hepatic oxidative stress and inflammation associated with nonalcoholic fatty liver disease (NADLD) in high fat diet (HFD) fed rats. METHOD: Wistar rats were fed with a HFD or laboratory chow diet for 8 weeks. Metformin was administered orally at a dose of 200 mg/kg. Body weight, food and water intake were recorded on daily basis. Oral glucose tolerance test (OGTT), biochemical analysis and histological examinations were conducted on plasma and tissue samples. Antioxidant and anti-inflammatory mRNA expression was analyzed using reverse transcription polymeric chain reaction (RT-PCR). RESULTS: Metformin treatment for 8 weeks prevented HFD-induced weight gain and decreased fat deposition in HFD fed rats. Biochemical analysis revealed that metformin treatment significantly attenuated nitro-oxidative stress markers malondialdehyde (MDA), advanced protein oxidation product (APOP), and excessive nitric oxide (NO) levels in the liver of HFD fed rats. Gene expression analysis demonestrated that metformin treatment was associated with an enhanced expression of antioxidant genes such as Nrf-2, HO-1, SOD and catalase in liver of HFD fed rats. Metformin treatment also found to modulate the expression of fat metabolizing and anti-inflammatory genes including PPAR--γ, C/EBP-α, SREBP1c, FAS, AMPK and GLUT-4. Consistent with the biochemical and gene expression data, the histopathological examination unveiled that metformin treatment attenuated inflammatory cells infiltration, steatosis, hepatocyte necrosis, collagen deposition, and fibrosis in the liver of HFD fed rats. CONCLUSION: In conclusion, this study suggests that metformin might be effective in the prevention and treatment of HFD-induced steatosis by reducing hepatic oxidative stress and inflammation in the liver.

4.
Naunyn Schmiedebergs Arch Pharmacol ; 394(1): 33-47, 2021 01.
Article in English | MEDLINE | ID: mdl-32780227

ABSTRACT

The main focus of this study was to determine the role of etoricoxib in counterbalancing the oxidative stress, metabolic disturbances, and inflammation in high-fat (HF) diet-induced obese rats. To conduct this study, 28 male Wistar rats (weighing 190-210 g) were distributed randomly into four groups: control, control + etoricoxib, HF, and HF + etoricoxib. After 8 weeks of treatment with etoricoxib (200 mg/kg), all the animals were sacrificed followed by the collection of blood and tissue samples in order to perform biochemical tests along with histological staining on hepatic tissues. According to this study, etoricoxib treatment prevented the body weight gain in HF diet-fed rats. Furthermore, rats of HF + etoricoxib group exhibited better blood glucose tolerance than the rats of HF diet-fed group. In addition, etoricoxib also markedly normalized HF diet-mediated rise of hepatic enzyme activity. Etoricoxib treatment lowered the level of oxidative stress indicators significantly with a parallel augmentation of antioxidant enzyme activities. Furthermore, etoricoxib administration helped in preventing inflammatory cell invasion, collagen accumulation, and fibrotic catastrophe in HF diet-fed rats. The findings of the present work are suggestive of the helpful role of etoricoxib in deterring the metabolic syndrome as well as other deleterious pathological changes afflicting the HF diet-fed rats.


Subject(s)
Antioxidants/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Etoricoxib/pharmacology , Liver/drug effects , Animals , Catalase/metabolism , Diet, High-Fat , Glutathione/metabolism , Liver/metabolism , Male , Malondialdehyde/metabolism , Metabolic Syndrome/prevention & control , Oxidative Stress/drug effects , Peroxidase/metabolism , Rats, Wistar , Superoxide Dismutase/metabolism , Weight Gain/drug effects
5.
Sci Rep ; 9(1): 20026, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882854

ABSTRACT

The main objective of this experiment was to determine the effects of yogurt supplementation on fat deposition, oxidative stress, inflammation and fibrosis in the liver of rats with high-fat (HF) diet-induced obesity. Male Wistar rats were used in this study and were separated into the following four different groups: the control, control + yogurt, high fat and high fat+ yogurt groups. The high fat groups received a HF diet for eight weeks. A 5% yogurt (w/w) supplement was also provided to rats fed the HF diet. Yogurt supplementation prevented glucose intolerance and normalized liver-specific enzyme activities in the HF diet-fed rats. Yogurt supplementation also significantly reduced the levels of oxidative stress markers in the plasma and liver of HF diet-fed rats. Moreover, inflammatory cell infiltration, collagen deposition and fibrosis in the liver of HF diet-fed rats were also prevented by yogurt supplementation. Furthermore, yogurt supplementation normalized the intestinal lining and brush border in HF diet-fed rats. This study suggests that yogurt supplementation potentially represents an alternative therapy for the prevention of metabolic syndrome in HF diet-fed rats.


Subject(s)
Diet, High-Fat , Diet , Metabolic Syndrome/etiology , Obesity/metabolism , Oxidative Stress , Yogurt , Animals , Metabolic Syndrome/metabolism , Rats
6.
J Phys Chem B ; 123(33): 7204-7213, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31356087

ABSTRACT

Laser-induced photochemical reduction of aqueous [AuCl4]- is a green synthesis approach requiring no chemical reducing agents or stabilizers; but size control over the resulting gold nanoparticles remains a challenge. Under optical breakdown conditions producing hydrated electrons (eaq-) and hydroxyl radicals (OH•) through decomposition of water, [AuCl4]- reduction kinetics follow an autocatalytic rate law, which is governed by rate constants: nucleation rate k1, dependent on eaq-; and growth rate k2, dependent on the OH• recombination product, H2O2. In this work, we add the hydroxyl radical scavengers isopropyl alcohol and sodium acetate to limit H2O2 formation. Higher scavenger concentrations both lowered k2 values and produced smaller gold nanoparticles with Gaussian size distributions and remarkably narrow mass-weighted size distributions. With sufficiently high scavenger concentrations, the mean nanoparticle size could be tuned from 3.8 to 6.1 nm with polydispersity indices below 0.08. Both the higher surface area-normalized catalytic activity of the gold nanoparticles synthesized in the presence of scavengers, and FTIR measurements, indicate no capping ligands on the nanoparticle surfaces. These results demonstrate that the size distributions of "naked" gold nanoparticles produced by photochemical [AuCl4]- reduction can be effectively tuned by controlling the reaction kinetics.

7.
Article in English | MEDLINE | ID: mdl-30854003

ABSTRACT

Psidium guajava leaf is reported to contain many bioactive polyphenols which play an important role in the prevention and treatment of various diseases. Our investigation aimed to study the effect of Psidium guajava leaf powder supplementation on obesity and liver status by using experimental rats. To study the effects of guava leaf supplementation in high fat diet induced obesity, rats were randomly divided into four experimental groups (n=7), control (group I), control + guava leaf (group II), HCHF (group III), and HCHF + guava leaf (group IV). At the end of the experimental period (56 days), glucose intolerance, liver enzymes activities, antioxidant enzymes activities, and lipid and cholesterol profiles were evaluated. Our results revealed that guava leaf powder supplementation showed a significant reduction in fat deposition in obese rats. Moreover, liver enzyme functions were increased in high fat diet fed rats compared to the control rats significantly which were further ameliorated by guava leaf powder supplementation in high fat diet fed rats. High fat diet feeding also decreased the antioxidant enzyme functions and increased the lipid peroxidation products compared to the control rats. Guava leaf powder supplementation in high fat diet fed rats reduced the oxidative stress markers and reestablished antioxidant enzyme system in experimental animals. Guava leaf powder supplementation in high fat diet fed rats also showed a relative decrease in inflammatory cells infiltration and collagen deposition in the liver compared to the high fat diet fed rats. The present study suggests that the supplementation of guava leaf powder prevents obesity, improves glucose intolerance, and decreases inflammation and oxidative stress in liver of high carbohydrate high fat diet fed rats.

8.
Biomed Pharmacother ; 103: 1154-1162, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29715759

ABSTRACT

Red spinach (Amaranthus tricolor) has been reported to possess many benefits and medicinal properties and used as a part of traditional medicine in Ayurveda and Siddha. The aim of the study was to investigate the effects of Amaranthus tricolor on isoproterenol-induced oxidative stress, fibrosis, and myocardial damage in ovariectomized rats. Ovariectomy surgery was conducted to remove both ovaries from the rats. After recovery, rats were administered with ISO subcutaneously (50 mg/kg) twice a week and were treated with ethanolic extracts of A. tricolor. This investigation showed that the level of oxidative stress markers was significantly increased while the superoxide dismutase (SOD) activity decreased in ISO administered ovariectomized rats. A. tricolor extract and atenolol treatment prevented the rise of malondialdehyde, nitric oxide and advanced protein oxidation product. Moreover, elevated activities of AST, ALT, and CK-MB enzymes were also lowered by both atenolol and A. tricolor treatment. Increased uric acid and creatinine levels were also normalized by atenolol, and A. Tricolor treatment in ISO administered ovariectomized rats. ISO-induced ovariectomized rats also showed massive inflammatory cell infiltration, fibrosis and iron deposition in heart compared to sham rats. Atenolol and A. tricolor treatment prevented the inflammatory cells infiltration, fibrosis, and iron deposition. These results suggest that A. tricolor treatment may protect against ISO administered myocardial infarction in ovariectomized rats probably by preventing inflammation, oxidative stress, and fibrosis. Further research is warranted to examine molecular mechanism of cardioprotective effect of A. tricolor.


Subject(s)
Amaranthus/chemistry , Cardiotonic Agents/therapeutic use , Myocardial Infarction/prevention & control , Myocardium/pathology , Oxidative Stress/drug effects , Plant Extracts/therapeutic use , Animals , Cardiotonic Agents/isolation & purification , Disease Models, Animal , Female , Isoproterenol , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/metabolism , Ovariectomy , Plant Extracts/isolation & purification , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL