Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2402155, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795001

ABSTRACT

Two-dimensional (2D) materials exhibit the potential to transform semiconductor technology. Their rich compositional and stacking varieties allow tailoring materials' properties toward device applications. Monolayer to multilayer gallium sulfide (GaS) with its ultraviolet band gap, which can be tuned by varying the layer number, holds promise for solar-blind photodiodes and light-emitting diodes as applications. However, achieving commercial viability requires wafer-scale integration, contrasting with established, limited methods such as mechanical exfoliation. Here the one-step synthesis of 2D GaS is introduced via metal-organic chemical vapor deposition on sapphire substrates. The pulsed-mode deposition of industry-standard precursors promotes 2D growth by inhibiting the vapor phase and on-surface pre-reactions. The interface chemistry with the growth of a Ga adlayer that results in an epitaxial relationship is revealed. Probing structure and composition validate thin-film quality and 2D nature with the possibility to control the thickness by the number of GaS pulses. The results highlight the adaptability of established growth facilities for producing atomically thin to multilayered 2D semiconductor materials, paving the way for practical applications.

2.
Phys Chem Chem Phys ; 17(47): 31790-800, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26563554

ABSTRACT

A Li4Ti5O12 (LTO) film was coated as buffer layer onto a LiNi0.5Mn1.5O4 (LNMO) high-voltage cathode, and after cycling of the cathode in a battery electrolyte, the LTO film was investigated by means of synchrotron radiation based hard X-ray photoelectron spectroscopy (HAXPES). By tuning the photon energy between 2 keV and 6 keV, we obtained non-destructive depth profiles of the coating material with probing depths ranging from 6 nm to 20 nm. The coating was found to be covered by a few nanometers thin surface layer resulting from electrolyte decomposition. This layer consisted predominantly of organic polymers as well as metal fluorides and fluorophosphates. A positive influence of the Li4Ti5O12 coating with regard to the size and stability of the surface layer was found. The coating itself consisted of a uniform mixture of Li(I), Ti(IV), Ni(II) and Mn(IV) oxides that most likely adopted a spinel structure by forming a solid solution of the two spinels LiNi0.5Mn1.5O4 and Li4Ti5O12 with Li, Mn, Ni and Ti cations mixing on the spinel octahedral sites. The diffusion of Ni and Mn ions into the Li4Ti5O12 lattice occurred during the heat treatment when preparing the cathode. The doping of Li4Ti5O12 with the open d-shell ions Ni(2+) (d(8)) and Mn(4+) (d(3)) should increase the electronic conductivity of the coating significantly, as was found in previous studies. The complex signal structure of the Ti 2p, Ni 2p and Mn 2p core levels provides insight into the chemical nature of the transition metal ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...