Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38168268

ABSTRACT

Vaccine development targeting rapidly evolving pathogens such as HIV-1 requires induction of broadly neutralizing antibodies (bnAbs) with conserved paratopes and mutations, and, in some cases, the same Ig-heavy chains. The current trial-and-error search for immunogen modifications that improve selection for specific bnAb mutations is imprecise. To precisely engineer bnAb boosting immunogens, we used molecular dynamics simulations to examine encounter states that form when antibodies collide with the HIV-1 Envelope (Env). By mapping how bnAbs use encounter states to find their bound states, we identified Env mutations that were predicted to select for specific antibody mutations in two HIV-1 bnAb B cell lineages. The Env mutations encoded antibody affinity gains and selected for desired antibody mutations in vivo. These results demonstrate proof-of-concept that Env immunogens can be designed to directly select for specific antibody mutations at residue-level precision by vaccination, thus demonstrating the feasibility of sequential bnAb-inducing HIV-1 vaccine design.

2.
Int J Mol Sci ; 23(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36499106

ABSTRACT

Previous research has indicated that various metabolites belonging to phenolic acids (PAs), produced by gut microflora through the breakdown of polyphenols, help in promoting bone development and protecting bone from degeneration. Results have also suggested that G-protein-coupled receptor 109A (GPR109A) functions as a receptor for those specific PAs such as hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA). Indeed, HA has a molecular structural similarity with nicotinic acid (niacin) which has been shown previously to bind to GPR109A receptor and to mediate antilipolytic effects; however, the binding pocket and the structural nature of the interaction remain to be recognized. In the present study, we employed a computational strategy to elucidate the molecular structural determinants of HA binding to GPR109A and GPR109B homology models in understanding the regulation of osteoclastogenesis. Based on the docking and molecular dynamics simulation studies, HA binds to GPR109A similarly to niacin. Specifically, the transmembrane helices 3, 4 and 6 (TMH3, TMH4 and TMH6) and Extracellular loop 1 and 2 (ECL1 and ECL2) residues of GRP109A; R111 (TMH3), K166 (TMH4), ECL2 residues; S178 and S179, and R251 (TMH6), and residues of GPR109B; Y87, Y86, S91 (ECL1) and C177 (ECL2) contribute for HA binding. Simulations and Molecular Mechanics Poisson-Boltzmann solvent accessible area (MM-PBSA) calculations reveal that HA has higher affinity for GPR109A than for GPR109B. Additionally, in silico mutation analysis of key residues have disrupted the binding and HA exited out from the GPR109A protein. Furthermore, measurements of time-resolved circular dichroism spectra revealed that there are no major conformational changes in the protein secondary structure on HA binding. Taken together, our findings suggest a mechanism of interaction of HA with both GPR109A and GPR109B receptors.


Subject(s)
Niacin , Receptors, Nicotinic , Niacin/metabolism , Receptors, Nicotinic/metabolism , Receptors, G-Protein-Coupled/metabolism , Hippurates , Spectrum Analysis
3.
Elife ; 112022 Nov 09.
Article in English | MEDLINE | ID: mdl-36350294

ABSTRACT

Cyclic AMP (cAMP) is known to function as a global regulator of Mycobacterium tuberculosis gene expression. Sequence-based transcriptomic profiling identified the mycobacterial regulon controlled by the cAMP receptor protein, CRP. In this study, we identified a new subset of CRP-associated genes including virulence determinants which are also under the control of a major regulator, PhoP. Our results suggest that PhoP as a DNA binding transcription factor, impacts expression of these genes, and phosphorylated PhoP promotes CRP recruitment at the target promoters. Further, we uncover a distinct regulatory mechanism showing that activation of these genes requires direct recruitment of both PhoP and CRP at their target promoters. The most fundamental biological insight is derived from the inhibition of CRP binding at the regulatory regions in a PhoP-deleted strain owing to CRP-PhoP protein-protein interactions. Based on these results, a model is proposed suggesting how CRP and PhoP function as co-activators of the essential pathogenic determinants. Taken together, these results uncover a novel mode of regulation where a complex of two interacting virulence factors impact expression of virulence determinants. These results have significant implications on TB pathogenesis.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolism , Virulence/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Regulon , Gene Expression Regulation, Bacterial
4.
J Mol Model ; 28(8): 237, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35900600

ABSTRACT

Acifran is a well-known agonist of G-protein-coupled receptor protein, namely GPR109A. Acifran is primarily used in the treatment of dyslipidemia, myocardial infractions, and atherosclerosis in humans due to its lower vascular and metabolic side effects. However, experimental and computational studies on interaction sites of acifran with GPR proteins (GPR109A and GPR109B) are lacking. Our computational studies using docking and molecular dynamics simulation revealed that acifran binds distinctly to both GPR109A and GPR109B, but with lower affinity to the latter. The weak binding of acifran-GPR109B is mainly due to the presence of residues S91 and N94 in ECL1 and I178 amino acid in ECL2 region of GPR109B, whereas R111 and R251 residues in TMH3 and TMH6 are crucial for GPR109A-acifran complex stability. Additionally, molecular mechanics/Poisson-Boltzmann solvent accessible surface area (MM/PBSA) analysis revealed that both GPR109A- and GPR109B-acifran complexes are energetically stable with lower calculated binding free energy values for the latter. Energy-minimized structures of GPR109A-acifran and GPR109B-acifran complex.


Subject(s)
Furans , Receptors, G-Protein-Coupled , Humans , Molecular Dynamics Simulation , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism
5.
Elife ; 112022 04 27.
Article in English | MEDLINE | ID: mdl-35475970

ABSTRACT

L,D-transpeptidase function predominates in atypical 3 → 3 transpeptide networking of peptidoglycan (PG) layer in Mycobacterium tuberculosis. Prior studies of L,D-transpeptidases have identified only the catalytic site that binds to peptide moiety of the PG substrate or ß-lactam antibiotics. This insight was leveraged to develop mechanism of its activity and inhibition by ß-lactams. Here, we report identification of an allosteric site at a distance of 21 Å from the catalytic site that binds the sugar moiety of PG substrates (hereafter referred to as the S-pocket). This site also binds a second ß-lactam molecule and influences binding at the catalytic site. We provide evidence that two ß-lactam molecules bind co-operatively to this enzyme, one non-covalently at the S-pocket and one covalently at the catalytic site. This dual ß-lactam-binding phenomenon is previously unknown and is an observation that may offer novel approaches for the structure-based design of new drugs against M. tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Peptidyl Transferases , Anti-Bacterial Agents/pharmacology , Catalytic Domain , Mycobacterium tuberculosis/metabolism , Peptidoglycan/metabolism , Peptidyl Transferases/metabolism , beta-Lactams/metabolism
6.
Methods Mol Biol ; 2385: 175-236, 2022.
Article in English | MEDLINE | ID: mdl-34888722

ABSTRACT

The enzyme-catalyzed reactions are traditionally studied with experimental kinetic assays. The modern theoretical modeling techniques provide a complementary way to investigate these catalytic reactions. Experimental assay frequently does not allow an unequivocal answer to the factors controlling the reaction mechanism. On the other hand, the theoretical experiments provide a precise understanding of the molecular-level steps involved in catalytic reactions. However, modeling requires at least structural data on the enzyme and reactant, and the complexity of the enzyme systems can still be a challenge.In this chapter, we are going to describe how to apply theoretical modeling methods, such as MD simulation, QM-only cluster models of enzyme active site, or QM:MM multiscale modeling to study enzyme kinetics and even to predict kinetic isotope effect (KIE). We present a full protocol that starts from the PDB structure of the enzyme, through MD simulation of enzyme: substrate complex and statistical analysis of MD trajectory, selection of a model of the active site, and study of reaction pathways. We show how theoretical predictions basing on QM-only cluster models, QM:MM model, or multiple QM:MM models derived from QM:MM:MD simulations can be correlated with experimental kinetic results. Finally, we show how one can calculate intrinsic KIE associated with an individual molecular step.


Subject(s)
Molecular Dynamics Simulation , Quantum Theory , Catalysis , Catalytic Domain , Computer Simulation , Kinetics
7.
Bioinform Biol Insights ; 15: 11779322211056122, 2021.
Article in English | MEDLINE | ID: mdl-34866904

ABSTRACT

The transmembrane G-protein coupled receptor GPR109A has been previously shown to function as a receptor for niacin in mediating antilipolytic effects. Although administration of high doses of niacin has shown beneficial effects on lipid metabolism, however, it is often accompanied by disturbing side effects such as flushing, liver damage, glucose intolerance, or gastrointestinal problems. Thus, it is important to understand niacin-GPR109A interactions, which can be beneficial for the development of alternate drugs having antilipolytic effects with less or no side effects. To get into the structural insights on niacin binding to GPR109A, we have performed 100 nanoseconds long all-atom MD simulations of five niacin-GPR109A complexes (automatically docked pose 0, and randomly placed niacin in poses 1 to 4 in the receptor crevice) and analyzed using binding free energy calculations and H-bond analysis. Steered MD simulations were used to get an average force for niacin translocation between the bulk and the external crevice of the wild type and mutant (N86Y, W91 S, S178I, and triple mutant of all three residues) GPR109A receptors, as well as GPR109B (as a control that does not bind niacin). The H-bond analysis revealed that TMH3 residue R111 interacts with niacin in a total of 4 (poses 0 to 3) complexes, while residues C177, S178, and S179 contact niacin in complex pose 4, and all these complexes were energetically stable. According to steered MD simulations, all the GPR109A mutants and GPR109B required greater force than that of wild-type GPR109A to translocate in the external crevice, suggesting increased sterical obstacles. Thus, the residues N86 (at the junction of TMH2/ECL2), W91 (ECL2), R111 (TMH3), and ECL3 residues (C177, S178, S179) play an important role for optimal routing of niacin entry and to bind GPR109A.

8.
Biochim Biophys Acta Gen Subj ; 1865(1): 129750, 2021 01.
Article in English | MEDLINE | ID: mdl-32980502

ABSTRACT

BACKGROUND: The products of the lysine biosynthesis pathway, meso-diaminopimelate and lysine, are essential for bacterial survival. This paper focuses on the structural and mechanistic characterization of 4-hydroxy-tetrahydrodipicolinate reductase (DapB), which is one of the enzymes from the lysine biosynthesis pathway. DapB catalyzes the conversion of (2S, 4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate (HTPA) to 2,3,4,5-tetrahydrodipicolinate in an NADH/NADPH dependent reaction. Genes coding for DapBs were identified as essential for many pathogenic bacteria, and therefore DapB is an interesting new target for the development of antibiotics. METHODS: We have combined experimental and computational approaches to provide novel insights into mechanism of the DapB catalyzed reaction. RESULTS: Structures of DapBs originating from Mycobacterium tuberculosis and Vibrio vulnificus in complexes with NAD+, NADP+, as well as with inhibitors, were determined and described. The structures determined by us, as well as currently available structures of DapBs from other bacterial species, were compared and used to elucidate a mechanism of reaction catalyzed by this group of enzymes. Several different computational methods were used to provide a detailed description of a plausible reaction mechanism. CONCLUSIONS: This is the first report presenting the detailed mechanism of reaction catalyzed by DapB. GENERAL SIGNIFICANCE: Structural data in combination with information on the reaction mechanism provide a background for development of DapB inhibitors, including transition-state analogues.


Subject(s)
Lysine/metabolism , Mycobacterium tuberculosis/enzymology , Oxidoreductases/metabolism , Tuberculosis/microbiology , Vibrio Infections/microbiology , Vibrio vulnificus/enzymology , Biosynthetic Pathways , Catalytic Domain , Humans , Models, Molecular , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/metabolism , Oxidoreductases/chemistry , Protein Conformation , Substrate Specificity , Vibrio vulnificus/chemistry , Vibrio vulnificus/metabolism
9.
Int J Biol Macromol ; 163: 718-729, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32650010

ABSTRACT

Thebaine 6-O-demethylase (T6ODM) is an Fe(II)/2-oxoglutarate-dependent dioxygenase catalysing two oxidative O-demethylation reactions in morphine biosynthesis. Its crystal structure revealed a large active site pocket which is at least two times larger than necessary to accommodate a substrate (thebaine or oripavine) molecule. Since so far no crystal structures have been obtained for enzyme-substrate complex, which is necessary to explain the enzyme regiospecificity towards the C6-bound methoxy group, in this work we used computational methods and multi-parametric surface plasmon resonance measurements to elucidate the most likely structure of this complex and the reaction mechanism starting therefrom. Results of simulations and experiments unanimously indicate that the enzyme-substrate complex of T6ODM has a 1:2 stoichiometry. The key residues responsible for substrate binding are: Val-128, Glu-133, Met-150 and Agr-219 for the substrate in the distal position, and Asp-144, Leu-235 and Leu-353 for the proximal substrate molecule. QM/MM and DFT calculations show that the oxo ligand is bound trans to His-295 and the enzyme catalyzes hydroxylation of the C6-bound methoxy group according to the established rebound mechanism. The final stage of the demethylation reaction, which includes deformylation and enol-keton tautomerization steps, is most likely catalysed by water molecules and takes place in the solvent.


Subject(s)
Oxidoreductases, O-Demethylating/chemistry , Thebaine/chemistry , Biocatalysis , Density Functional Theory , Hydroxylation , Ligands , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship , Substrate Specificity
10.
Biosci Rep ; 37(6)2017 Dec 22.
Article in English | MEDLINE | ID: mdl-28963370

ABSTRACT

Guanylate kinase is an essential and conserved enzyme in nucleotide biosynthetic pathway that transfers phosphoryl group of ATP to GMP for yielding GDP. Here, we report the phosphorylation of guanylate kinase from Mycobacterium tuberculosis (mGmk) by eukaryotic-type Ser/Thr kinase, PknA. Mass spectrometric studies identified Thr101 and Thr169 as phosphorylatable residues in mGmk. To evaluate the significance of phosphorylation in these threonines, two point (T101A and T169A) and one double (T101A-T169A) mutants were generated. The kinase assay with these mutant proteins revealed the major contribution of Thr169 compared with Thr101 in the phosphorylation of mGmk. Kinetic analysis indicated that p-mGmk was deficient in its enzymatic activity compared with that of its un-phosphorylated counterpart. Surprisingly, its phosphoablated (T169A) as well as phosphomimic (T169E) variants exhibited decreased activity as was observed with p-mGmk. Structural analysis suggested that phosphorylation of Thr169 might affect its interaction with Arg166, which is crucial for the functioning of mGmk. In fact, the R166A and R166K mutant proteins displayed a drastic decrease in enzymatic activity compared with that of the wild-type mGmk. Molecular dynamics (MD) studies of mGmk revealed that upon phosphorylation of Thr169, the interactions of Arg165/Arg166 with Glu158, Asp121 and residues of the loop in GMP-binding domain are perturbed. Taken together, our results illuminate the mechanistic insights into phosphorylation-mediated modulation of the catalytic activity of mGmk.


Subject(s)
Bacterial Proteins/metabolism , Guanylate Kinases/metabolism , Mycobacterium tuberculosis/enzymology , Protein Serine-Threonine Kinases/metabolism , Threonine/metabolism , Amino Acid Sequence , Arginine/metabolism , Bacterial Proteins/genetics , Biocatalysis , Catalytic Domain , Guanylate Kinases/chemistry , Guanylate Kinases/genetics , Kinetics , Molecular Dynamics Simulation , Molecular Structure , Phosphorylation , Protein Domains , Threonine/genetics
11.
J Biomol Struct Dyn ; 35(6): 1153-1167, 2017 May.
Article in English | MEDLINE | ID: mdl-27058822

ABSTRACT

Aristaless (Al) and clawless (Cll) homeodomains that are involved in leg development in Drosophila melanogaster are known to bind cooperatively to 5'-(T/C)TAATTAA(T/A)(T/A)G-3' DNA sequence, but the mechanism of their binding to DNA is unknown. Molecular dynamics (MD) studies have been carried out on binary, ternary, and reconstructed protein-DNA complexes involving Al, Cll, and DNA along with binding free energy analysis of these complexes. Analysis of MD trajectories of Cll-3A01, binary complex reveals that C-terminal end of helixIII of Cll, unwind in the absence of Al and remains so in reconstructed ternary complex, Cll-3A01-Al. In addition, this change in secondary structure of Cll does not allow it to form protein-protein interactions with Al in the ternary reconstructed complex. However, secondary structure of Cll and its interactions are maintained in other reconstructed ternary complex, Al-3A01-Cll where Cll binds to Al-3A01, binary complex to form ternary complex. These interactions as observed during MD simulations compare well with those observed in ternary crystal structure. Thus, this study highlights the role of helixIII of Cll and protein-protein interactions while proposing likely mechanism of recognition in ternary complex, Al-Cll-DNA.


Subject(s)
DNA/chemistry , Drosophila Proteins/chemistry , Molecular Dynamics Simulation , Protein Structure, Secondary , Repressor Proteins/chemistry , Animals , Drosophila Proteins/metabolism , Nucleic Acid Conformation , Protein Binding , Repressor Proteins/metabolism
12.
PLoS One ; 10(3): e0119329, 2015.
Article in English | MEDLINE | ID: mdl-25750990

ABSTRACT

In this study, of the hundred Escherichia coli strains isolated from feral Pigeon faeces, eighty five strains were resistant to one or more antibiotics and fifteen sensitive to all the antibiotics tested. The only strain (among all antibiotic-resistant E. coli isolates) that possessed class 1 integron was PGB01. The dihydrofolate reductase gene of the said integron was cloned, sequenced and expressed in E. coli JM109. Since PGB01 was native to pigeon's gut, we have compared the growth of PGB01 at two different temperatures, 42°C (normal body temperature of pigeon) and 37°C (optimal growth temperature of E. coli; also the human body temperature), with E. coli K12. It was found that PGB01 grew better than the laboratory strain E. coli K12 at 37°C as well as at 42°C. In the thermal fitness assay, it was observed that the cells of PGB01 were better adapted to 42°C, resembling the average body temperature of pigeon. The strain PGB01 also sustained more microwave mediated thermal stress than E. coli K12 cells. The NMR spectra of the whole cells of PGB01 varied from E. coli K12 in several spectral peaks relating some metabolic adaptation to thermotolerance. On elevating the growth temperature from 37°C to 42°C, susceptibility to kanamycin (both strains were sensitive to it) of E. coli K12 was increased, but in case of PGB01 no change in susceptibility took place. We have also attempted to reveal the basis of trimethoprim resistance phenotype conferred by the dfrA7 gene homologue of PGB01. Molecular Dynamics (MD) simulation study of docked complexes, PGB01-DfrA7 and E. coli TMP-sensitive-Dfr with trimethoprim (TMP) showed loss of some of the hydrogen and hydrophobic interaction between TMP and mutated residues in PGB01-DfrA7-TMP complex compared to TMP-sensitive-Dfr-TMP complex. This loss of interaction entails decrease in affinity of TMP for PGB01-DfrA7 compared to TMP-sensitive-Dfr.


Subject(s)
Columbidae/microbiology , Escherichia coli/isolation & purification , Feces/microbiology , Trimethoprim Resistance , Animals , Escherichia coli/classification , Escherichia coli/growth & development , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Integrons , Microbial Sensitivity Tests , Temperature , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/genetics
13.
J Biomol Struct Dyn ; 33(10): 2069-82, 2015.
Article in English | MEDLINE | ID: mdl-25484111

ABSTRACT

In most of homeodomain-DNA complexes, glutamine or lysine is present at 50th position and interacts with 5th and 6th nucleotide of core recognition region. Molecular dynamics simulations of Msx-1-DNA complex (Q50-TG) and its variant complexes, that is specific (Q50K-CC), nonspecific (Q50-CC) having mutation in DNA and (Q50K-TG) in protein, have been carried out. Analysis of protein-DNA interactions and structure of DNA in specific and nonspecific complexes show that amino acid residues use sequence-dependent shape of DNA to interact. The binding free energies of all four complexes were analysed to define role of amino acid residue at 50th position in terms of binding strength considering the variation in DNA on stability of protein-DNA complexes. The order of stability of protein-DNA complexes shows that specific complexes are more stable than nonspecific ones. Decomposition analysis shows that N-terminal amino acid residues have been found to contribute maximally in binding free energy of protein-DNA complexes. Among specific protein-DNA complexes, K50 contributes more as compared to Q50 towards binding free energy in respective complexes. The sequence dependence of local conformation of DNA enables Q50/Q50K to make hydrogen bond with nucleotide(s) of DNA. The changes in amino acid sequence of protein are accommodated and stabilized around TAAT core region of DNA having variation in nucleotides.


Subject(s)
DNA/chemistry , Glutamine/chemistry , Lysine/chemistry , MSX1 Transcription Factor/chemistry , Molecular Dynamics Simulation , Amino Acid Motifs , Amino Acid Substitution , Binding Sites , Humans , Hydrogen Bonding , MSX1 Transcription Factor/genetics , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Thermodynamics
14.
Mol Genet Genomics ; 289(6): 1171-82, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24997084

ABSTRACT

HapR is a quorum-sensing master regulatory protein in Vibrio cholerae. Though many facts are known regarding its structural and functional aspects, much still can be learnt from natural variants of this wild-type protein. While unraveling the underlying cause of functional inertness of a natural variant (HapRV2), the significance of a conserved glycine residue at position 39 in a glycine-rich linker in DNA-binding domain comes into light. This work aims at investigating how the length of glycine-rich linker (R(33)GIGRGG(39)) bridging helices α1 and α2 modulates the functionality of HapR. In pursuit of our interest, glycine residues were inserted after terminal glycine (G39) of the linker in a sequential manner. To evaluate functionality, all the glycine linker variants were subjected to a battery of performance tests under various conditions. Combined in vitro and in vivo results clearly demonstrated a gradual functional impairment of HapR linker variants coupled with increasing length of glycine-rich linker and finally, linker variant harboring four glycine residues resulted in a functionally compromised protein with significant loss of communication with cognate DNAs. Molecular dynamics studies of modeled HapR linker variants in complex with cognate promoter region show that residues namely Ser50, Thr53 and Asn56 are involved in varying degree of interactions with different nucleotides of HapR-DNA complex. The diminished functionality between variants and DNA appears to result from reduced or no interactions between Phe55 and nucleotides of cognate DNA as observed during simulations.


Subject(s)
Bacterial Proteins/chemistry , DNA-Binding Proteins/chemistry , Repressor Proteins/chemistry , Vibrio cholerae/genetics , Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Glycine/chemistry , Molecular Dynamics Simulation , Molecular Weight , Phenylalanine/chemistry , Promoter Regions, Genetic , Protein Binding , Protein Structure, Tertiary , Quorum Sensing , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...