Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(20): 5463-5478, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37638537

ABSTRACT

The major plant pest fall armyworm (FAW), Spodoptera frugiperda, is native to the Americas and has colonized Africa and Asia within the Eastern hemisphere since 2016, causing severe damage to multiple agricultural crop species. However, the genetic origin of these invasive populations requires more in-depth exploration. We analysed genetic variation across the genomes of 280 FAW individuals from both the Eastern hemisphere and the Americas. The global range-wide genetic structure of FAW shows that the FAW in America has experienced deep differentiation, largely consistent with the Z-chromosomal Tpi haplotypes commonly used to differentiate 'corn-strain' and 'rice-strain' populations. The invasive populations from Africa and Asia are different from the American ones and have a relatively homogeneous population structure, consistent with the common origin and recent spreading from Africa to Asia. Our analyses suggest that north- and central American 'corn-strain' FAW are the most likely sources of the invasion into the Eastern hemisphere. Furthermore, evidence based on genomic, transcriptomic and mitochondrial haplotype network analyses indicates an earlier, independent introduction of FAW into Africa, with subsequent migration into the recent invasive population.

2.
Mol Ecol Resour ; 20(6): 1682-1696, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32619331

ABSTRACT

The rapid wide-scale spread of fall armyworm (Spodoptera frugiperda) has caused serious crop losses globally. However, differences in the genetic background of subpopulations and the mechanisms of rapid adaptation behind the invasion are still not well understood. Here we report the assembly of a 390.38-Mb chromosome-level genome of fall armyworm derived from south-central Africa using Pacific Bioscience (PacBio) and Hi-C sequencing technologies, with scaffold N50 of 12.9 Mb and containing 22,260 annotated protein-coding genes. Genome-wide resequencing of 103 samples and strain identification were conducted to reveal the genetic background of fall armyworm populations in China. Analysis of genes related to pesticide- and Bacillus thuringiensis (Bt) resistance showed that the risk of fall armyworm developing resistance to conventional pesticides is very high. Laboratory bioassay results showed that insects invading China carry resistance to organophosphate and pyrethroid pesticides, but are sensitive to genetically modified maize expressing the Bt toxin Cry1Ab in field experiments. Additionally, two mitochondrial fragments were found to be inserted into the nuclear genome, with the insertion event occurring after the differentiation of the two strains. This study represents a valuable advance toward improving management strategies for fall armyworm.


Subject(s)
Hemolysin Proteins , Insecticide Resistance , Spodoptera/genetics , Animals , Bacterial Proteins , China , Endotoxins , Genome, Insect , Hemolysin Proteins/genetics , Plants, Genetically Modified/genetics , South Africa , Spodoptera/drug effects , Zea mays/genetics
3.
J Agric Food Chem ; 66(38): 9933-9941, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30180560

ABSTRACT

Host marking pheromones (HMPs) deposited by female fruit flies deter other females from overexploiting the same fruit for egg laying. Using a bioassay-guided approach, we identified the HMP of the Natal fruit fly species Ceratitis rosa as glutamic acid, 1, from the aqueous fecal matter extract of ovipositing females by liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS). Dual choice oviposition assays showed that both the fecal matter extract and 1 significantly reduced oviposition responses in conspecific females of C. rosa. Glutamic acid levels were 10-20 times higher in fecal matter than in the ovipositor or hemolymph extracts of females. Identification of 1 as a host marking pheromone in females of C. rosa improves our understanding of fruit fly chemical ecology and provides evidence that it could be used as a potential component in the integrated management of this fruit fly species.


Subject(s)
Ceratitis capitata/chemistry , Glutamic Acid/analysis , Pheromones/analysis , Animals , Ceratitis capitata/metabolism , Feces/chemistry , Female , Glutamic Acid/metabolism , Male , Mangifera/parasitology , Mass Spectrometry , Oviposition , Pheromones/metabolism
4.
J Agric Food Chem ; 65(39): 8560-8568, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28911226

ABSTRACT

Many insects mark their oviposition sites with a host marking pheromone (HMP) to deter other females from overexploiting these sites. Previous studies have identified and used HMPs to manage certain fruit fly species; however, few are known for African indigenous fruit flies. The HMP of the African fruit fly, Ceratitis cosyra, was identified as the ubiquitous plant and animal antioxidant tripeptide, glutathione (GSH). GSH was isolated from the aqueous extract of adult female fecal matter and characterized by LC-QTOF-MS. GSH level increased with increasing age of female fecal matter, with highest concentration detected from 2-week-old adult females. Additionally, GSH levels were 5-10-times higher in fecal matter than in the ovipositor or hemolymph extracts of females. In bioassays, synthetic GSH reduced oviposition responses in conspecifics of C. cosyra and the heterospecific species C. rosa, C. fasciventris, C. capitata, and Zeugodacus cucurbitae. These results represent the first report of a ubiquitous antioxidant as a semiochemical in insects and its potential use in fruit fly management.


Subject(s)
Antioxidants/analysis , Glutathione/analysis , Pheromones/analysis , Tephritidae/chemistry , Animals , Ceratitis capitata/chemistry , Feces/chemistry , Female , Insect Control/methods , Oviposition , Time Factors
5.
J Econ Entomol ; 105(6): 2068-75, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23356072

ABSTRACT

We investigated conspecific and heterospecific oviposition host discrimination among four economically important fruit fly pests of mango in Africa (Ceratitis capitata, Wiedemann; C. fasciventris, Bezzi; C. rosa, Karsch, and C. cosyra, Walker) with regard to host-marking behavior and fecal matter aqueous solutions. The objective of the study was to get insight into the potential of managing these pests using the host-marking technique. Observations were done on mango slices marked by the flies and treated with aqueous solutions of fecal matter of the flies, respectively. In both host-marking and fecal matter experiments, C. cosyra, which is the most destructive species of the four on mango, was exceptional. It only discriminated against hosts treated with its fecal matter but with lower sensitivity while C. capitata and C.fasciventris discriminated against hosts marked by it or treated with its fecal matter and with higher sensitivity. Our results provide evidence for potential of managing some of the major fruit fly species infesting mango in Africa using the host-marking pheromone of the mango fruit fly, C. cosyra.


Subject(s)
Ceratitis capitata , Insect Control , Mangifera/parasitology , Oviposition , Pheromones , Animals , Behavior, Animal , Feces , Female , Food Parasitology , Host-Parasite Interactions , Kenya
SELECTION OF CITATIONS
SEARCH DETAIL
...