Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7006, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37938579

ABSTRACT

Quantum oscillation phenomenon is an essential tool to understand the electronic structure of quantum matter. Here we report a systematic study of quantum oscillations in the electronic specific heat Cel in natural graphite. We show that the crossing of a single spin Landau level and the Fermi energy give rise to a double-peak structure, in striking contrast to the single peak expected from Lifshitz-Kosevich theory. Intriguingly, the double-peak structure is predicted by the kernel term for Cel/T in the free electron theory. The Cel/T represents a spectroscopic tuning fork of width 4.8kBT which can be tuned at will to resonance. Using a coincidence method, the double-peak structure can be used to accurately determine the Landé g-factors of quantum materials. More generally, the tuning fork can be used to reveal any peak in fermionic density of states tuned by magnetic field, such as Lifshitz transition in heavy-fermion compounds.

2.
Sci Rep ; 11(1): 6835, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33767331

ABSTRACT

We present a study of the ground state and stability of the fractional plateau phase (FPP) with M/Msat = 1/8 in the metallic Shastry-Sutherland system TmB4. Magnetization (M) measurements show that the FPP states are thermodynamically stable when the sample is cooled in constant magnetic field from the paramagnetic phase to the ordered one at 2 K. On the other hand, after zero-field cooling and subsequent magnetization these states appear to be of dynamic origin. In this case the FPP states are closely associated with the half plateau phase (HPP, M/Msat = ½), mediate the HPP to the low-field antiferromagnetic (AF) phase and depend on the thermodynamic history. Thus, in the same place of the phase diagram both, the stable and the metastable (dynamic) fractional plateau (FP) states, can be observed, depending on the way they are reached. In case of metastable FP states thermodynamic paths are identified that lead to very flat fractional plateaus in the FPP. Moreover, with a further decrease of magnetic field also the low-field AF phase becomes influenced and exhibits a plateau of the order of 1/1000 Msat.

3.
Phys Rev Lett ; 126(10): 106801, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33784120

ABSTRACT

In the immediate vicinity of the critical temperature (T_{c}) of a phase transition, there are fluctuations of the order parameter that reside beyond the mean-field approximation. Such critical fluctuations usually occur in a very narrow temperature window in contrast to Gaussian fluctuations. Here, we report on a study of specific heat in graphite subject to a high magnetic field when all carriers are confined in the lowest Landau levels. The observation of a BCS-like specific heat jump in both temperature and field sweeps establishes that the phase transition discovered decades ago in graphite is of the second order. The jump is preceded by a steady field-induced enhancement of the electronic specific heat. A modest (20%) reduction in the amplitude of the magnetic field (from 33 to 27 T) leads to a threefold decrease of T_{c} and a drastic widening of the specific heat anomaly, which acquires a tail spreading to two times T_{c}. We argue that the steady departure from the mean-field BCS behavior is the consequence of an exceptionally large Ginzburg number in this dilute metal, which grows steadily as the field lowers. Our fit of the critical fluctuations indicates that they belong to the 3DXY universality class as in the case of the ^{4}He superfluid transition.

4.
Sci Adv ; 6(20): eaaz2536, 2020 May.
Article in English | MEDLINE | ID: mdl-32440544

ABSTRACT

The combination of different exotic properties in materials paves the way for the emergence of their new potential applications. An example is the recently found coexistence of the mutually antagonistic ferromagnetism and superconductivity in hydrogenated boron-doped diamond, which promises to be an attractive system with which to explore unconventional physics. Here, we show the emergence of Yu-Shiba-Rusinov (YSR) bands with a spatial extent of tens of nanometers in ferromagnetic superconducting diamond using scanning tunneling spectroscopy. We demonstrate theoretically how a two-dimensional (2D) spin lattice at the surface of a three-dimensional (3D) superconductor gives rise to the YSR bands and how their density-of-states profile correlates with the spin lattice structure. The established strategy to realize new forms of the coexistence of ferromagnetism and superconductivity opens a way to engineer the unusual electronic states and also to design better-performing superconducting devices.

5.
Sci Rep ; 9(1): 13552, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31537828

ABSTRACT

In this paper, the potential existence of two-gap superconductivity in Mo8Ga41 is addressed in detail by means of thermodynamic and spectroscopic measurements. A combination of highly sensitive bulk and surface probes, specifically ac-calorimetry and scanning tunneling spectroscopy (STS), are utilized on the same piece of crystal and reveal the presence of only one intrinsic gap in the system featuring strong electron-phonon coupling. Minute traces of additional superconducting phases detected by STS and also in the heat capacity measured in high magnetic fields on a high-quality and seemingly single-phase crystal might mimic the multigap superconductivity of Mo8Ga41 suggested recently in several studies.

6.
ACS Nano ; 11(11): 11746-11754, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29125286

ABSTRACT

In the presence of disorder, superconductivity exhibits short-range characteristics linked to localized Cooper pairs which are responsible for anomalous phase transitions and the emergence of quantum states such as the bosonic insulating state. Complementary to well-studied homogeneously disordered superconductors, superconductor-normal hybrid arrays provide tunable realizations of the degree of granular disorder for studying anomalous quantum phase transitions. Here, we investigate the superconductor-bosonic dirty metal transition in disordered nanodiamond arrays as a function of the dispersion of intergrain spacing, which ranges from angstroms to micrometers. By monitoring the evolved superconducting gaps and diminished coherence peaks in the single-quasiparticle density of states, we link the destruction of the superconducting state and the emergence of bosonic dirty metallic state to breaking of the global phase coherence and persistence of the localized Cooper pairs. The observed resistive bosonic phase transitions are well modeled using a series-parallel circuit in the framework of bosonic confinement and coherence.

7.
ACS Nano ; 11(6): 5358-5366, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28511000

ABSTRACT

Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature Tc ∼ 3 K and a Curie temperature TCurie > 400 K. In spite of the high TCurie, our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...