Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36142228

ABSTRACT

New hydrogel materials developed to improve soft tissue healing are an alternative for medical applications, such as tissue regeneration or enhancing the biotolerance effect in the tissue-implant-body fluid system. The biggest advantages of hydrogel materials are the presence of a large amount of water and a polymeric structure that corresponds to the extracellular matrix, which allows to create healing conditions similar to physiological ones. The present work deals with the change in mechanical properties of sodium alginate mixed with gelatin containing Pygeum africanum. The work primarily concentrates on the evaluation of the mechanical properties of the hydrogel materials produced by the sol-gel method. The antimicrobial activity of the hydrogels was investigated based on the population growth dynamics of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923, as well as the degree of degradation after contact with urine using an innovative method with a urine flow simulation stand. On the basis of mechanical tests, it was found that sodium alginate-based hydrogels with gelatin showed weaker mechanical properties than without the additive. In addition, gelatin accelerates the degradation process of the produced hydrogel materials. Antimicrobial studies have shown that the presence of African plum bark extract in the hydrogel enhances the inhibitory effect on Gram-positive and Gram-negative bacteria. The research topic was considered due to the increased demand from patients for medical devices to promote healing of urethral epithelial injuries in order to prevent the formation of urethral strictures.


Subject(s)
Prunus africana , Urology , Alginates/chemistry , Alginates/pharmacology , Anti-Bacterial Agents/pharmacology , Gelatin/chemistry , Gelatin/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Engineering/methods , Water
2.
Materials (Basel) ; 14(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34832339

ABSTRACT

The influence of cooling conditions and surface topography after finish turning of Ti6Al4V titanium alloy on corrosion resistance and surface bioactivity was analyzed. The samples were machined under dry and minimum quantity lubrication (MQL) conditions to obtain different surface roughness. The surface topographies of the processed samples were assessed and measured using an optical profilometer. The produced samples were subjected to electrochemical impedance spectroscopy (EIS) and corrosion potential tests (Ecorr) in the presence of simulated body fluid (SBF). The surface bioactivity of the samples was assessed on the basis of images from scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) analysis. The inspection of the surfaces of samples after turning under dry and MQL conditions revealed unevenly distributed precipitation of hydroxyapatite compounds (Ca/P) with a molar ratio in the range of 1.73-1.97. Regardless of the cutting conditions and surface roughness, the highest values of Ecorr ~0 mV were recorded on day 7 of immersion in the SBF solution. The impedance characteristics showed that, compared to the MQL conditions, surfaces machined under dry conditions were characterized by greater resistance and the presence of a passive layer on the processed surface. The main novelty of the paper is the study of the effect of ecological machining conditions, namely, dry and MQL cutting on the corrosion resistance and surface bioactivity of Ti6Al4V titanium alloy after finish turning. The obtained research results have practical significance. They can be used by engineers during the development of technological processes for medical devices made of Ti6Al4V alloy to obtain favorable functional properties of these devices.

3.
Anat Histol Embryol ; 50(1): 136-143, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32869908

ABSTRACT

This stereudy aimed at performing a histological and morphometric evaluation of the urethra and penis of male rabbits. Seven male New Zealand White rabbits weighing 2.1-3 kg were used in the study. The whole urethra, from the urinary bladder to the external urethral orifice, was dissected from the rabbits, and the tissue was sliced into sections at an interval of 2 mm. The sections were stained with haematoxylin-eosin, Masson-Goldner trichrome stain, Van Gieson's stain and Movat-Russell modified pentachrome stain. A detailed evaluation of the morphology and morphometry was performed. The parameters assessed were the type and height of epithelium, thickness and composition of connective tissue, and thickness and structure of muscularis. The histological structure of the rabbit urethra was found to be similar to humans. However, although the rabbits were found to have the same type of penis as the humans, the internal structure of the corpora cavernosa, the relative thickness of the tunica albuginea and the rudimentary glands of the penis were found to differ in these animals. The results of the present study may be useful in the designing of implants, drug testing or surgical procedures on the physiological and pathological urethra.


Subject(s)
Penis/anatomy & histology , Rabbits/anatomy & histology , Urethra/anatomy & histology , Animals , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...