Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Pain ; 25(3): 766-780, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37832899

ABSTRACT

The posterior insular cortex (PIC) is well positioned to perform somatosensory-limbic integration; yet, the function of neuronal subsets within the PIC in processing the sensory and affective dimensions of pain remains unclear. Here, we employ bidirectional chemogenetic modulation to characterize the function of PIC CaMKIIa-expressing excitatory neurons in a comprehensive array of sensory, affective, and thermoregulatory behaviors. Excitatory pyramidal neurons in the PIC were found to be sensitized under inflammatory pain conditions. Chemogenetic activation of excitatory CaMKIIa-expressing PIC neurons in non-injured conditions produced an increase in reflexive and affective pain- and anxiety-like behaviors. Moreover, activation of PIC CaMKIIa-expressing neurons during inflammatory pain conditions exacerbated hyperalgesia and decreased pain tolerance. However, Chemogenetic activation did not alter heat nociception via hot plate latency or body temperature. Conversely, inhibiting CaMKIIa-expressing neurons did not alter either sensory or affective pain-like behaviors in non-injured or under inflammatory pain conditions, but it did decrease body temperature and decreased hot plate latency. Our findings reveal that PIC CaMKIIa-expressing neurons are a critical hub for producing both sensory and affective pain-like behaviors and important for thermoregulatory processing. PERSPECTIVE: The present study reveals that activation of the posterior insula produces hyperalgesia and negative affect, and has a role in thermal tolerance and thermoregulation. These findings highlight the insula as a key player in contributing to the multidimensionality of pain.


Subject(s)
Hyperalgesia , Insular Cortex , Humans , Pain/psychology , Neurons/physiology , Body Temperature Regulation
2.
J Clin Invest ; 132(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35775484

ABSTRACT

Maladaptive changes of nerve injury-associated genes in dorsal root ganglia (DRGs) are critical for neuropathic pain genesis. Emerging evidence supports the role of long noncoding RNAs (lncRNAs) in regulating gene transcription. Here we identified a conserved lncRNA, named nerve injury-specific lncRNA (NIS-lncRNA) for its upregulation in injured DRGs exclusively in response to nerve injury. This upregulation was triggered by nerve injury-induced increase in DRG ELF1, a transcription factor that bound to the NIS-lncRNA promoter. Blocking this upregulation attenuated nerve injury-induced CCL2 increase in injured DRGs and nociceptive hypersensitivity during the development and maintenance periods of neuropathic pain. Mimicking NIS-lncRNA upregulation elevated CCL2 expression, increased CCL2-mediated excitability in DRG neurons, and produced neuropathic pain symptoms. Mechanistically, NIS-lncRNA recruited more binding of the RNA-interacting protein FUS to the Ccl2 promoter and augmented Ccl2 transcription in injured DRGs. Thus, NIS-lncRNA participates in neuropathic pain likely by promoting FUS-triggered DRG Ccl2 expression and may be a potential target in neuropathic pain management.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , RNA, Long Noncoding , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Humans , Neuralgia/genetics , Neuralgia/metabolism , Neuralgia/pathology , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
3.
Front Pain Res (Lausanne) ; 2: 721332, 2021.
Article in English | MEDLINE | ID: mdl-35295508

ABSTRACT

Cannabinoid receptors have been identified as potential targets for analgesia from studies on animal physiology and behavior, and from human clinical trials. Here, we sought to improve translational understanding of the mechanisms of cannabinoid-mediated peripheral analgesia. Human lumbar dorsal root ganglia were rapidly recovered from organ donors to perform physiological and anatomical investigations into the potential for cannabinoids to mediate analgesia at the level of the peripheral nervous system. Anatomical characterization of in situ gene expression and immunoreactivity showed that 61 and 53% of human sensory neurons express the CB1 gene and receptor, respectively. Calcium influx evoked by the algogen capsaicin was measured by Fura-2AM in dissociated human sensory neurons pre-exposed to the inflammatory mediator prostaglandin E2 (PGE2) alone or together with CB13 (1 µM), a cannabinoid agonist with limited blood-brain barrier permeability. Both a higher proportion of neurons and a greater magnitude of response to capsaicin were observed after exposure to CB13, indicating cannabinoid-mediated sensitization. In contrast, membrane properties measured by patch-clamp electrophysiology demonstrated that CB13 suppressed excitability and reduced action potential discharge in PGE2-pre-incubated sensory neurons, suggesting the suppression of sensitization. This bidirectional modulation of sensory neuron activity suggests that cannabinoids may suppress overall membrane excitability while simultaneously enhancing responsivity to TRPV1-mediated stimuli. We conclude that peripherally restricted cannabinoids may have both pro- and anti-nociceptive effects in human sensory neurons.

4.
Tissue Eng Part C Methods ; 27(2): 89-99, 2021 02.
Article in English | MEDLINE | ID: mdl-33349133

ABSTRACT

Prominent clinical problems related to the skin-nerve interface include barrier dysfunction and erythema, but it is the symptoms of pain and itch that most often lead patients to seek medical treatment. Tissue-engineered innervated skin models provide an excellent solution for studying the mechanisms underlying neurocutaneous disorders for drug screening, and cutaneous device development. Innervated skin substitutes provide solutions beyond traditional monolayer cultures and have advantages that make them preferable to in vivo animal studies for certain applications, such as measuring somatosensory transduction. The tissue-engineered innervated skin models replicate the complex stratified epidermis that provides barrier function in native skin, a feature that is lacking in monolayer co-cultures, while allowing for a level of detail in measurement of nerve morphology and function that cannot be achieved in animal models. In this review, the advantages and disadvantages of different cell sources and scaffold materials will be discussed and a presentation of the current state of the field is reviewed. Impact statement A review of the current state of innervated skin substitutes and the considerations that need to be addressed when developing these models. Tissue-engineered skin substitutes are customizable and provide barrier function allowing for screening of topical drugs and for studying nerve function.


Subject(s)
Drug Discovery , Skin, Artificial , Animals , Coculture Techniques , Epidermis , Humans , Skin
5.
ESC Heart Fail ; 7(6): 3983-3995, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32945624

ABSTRACT

AIMS: Duchenne muscular dystrophy (DMD) is an X-linked inherited disease due to dystrophin deficiency causing skeletal and cardiac muscle dysfunction. Affected patients lose ambulation by age 12 and usually die in the second to third decades of life from cardiac and respiratory failure. Symptomatic treatment includes the use of anti-inflammatory corticosteroids, which are associated with side effects including weight gain, osteoporosis, and increased risk of cardiovascular disease. Novel treatment options include blockade of the renin-angiotensin-aldosterone system, because angiotensin as well as aldosterone contribute to persistent inflammation and fibrosis, and aldosterone blockade represents an efficacious anti-fibrotic approach in cardiac failure. Recent preclinical findings enabled successful clinical testing of a combination of steroidal mineralocorticoid receptor antagonists (MRAs) and angiotensin converting enzyme inhibitors in DMD boys. The efficacy of MRAs alone on dystrophic skeletal muscle and heart has not been investigated. Here, we tested efficacy of the novel non-steroidal MRA finerenone as a monotherapy in a preclinical DMD model. METHODS AND RESULTS: The dystrophin-deficient, utrophin haploinsufficient mouse model of DMD was treated with finerenone and compared with untreated dystrophic and wild-type controls. Grip strength, electrocardiography, cardiac magnetic resonance imaging, muscle force measurements, histological quantification, and gene expression studies were performed. Finerenone treatment alone resulted in significant improvements in clinically relevant functional parameters in both skeletal muscle and heart. Normalized grip strength in rested dystrophic mice treated with finerenone (40.3 ± 1.0 mN/g) was significantly higher (P = 0.0182) compared with untreated dystrophic mice (35.2 ± 1.5 mN/g). Fatigued finerenone-treated dystrophic mice showed an even greater relative improvement (P = 0.0003) in normalized grip strength (37.5 ± 1.1 mN/g) compared with untreated mice (29.7 ± 1.1 mN/g). Finerenone treatment also led to significantly lower (P = 0.0075) susceptibility to limb muscle damage characteristic of DMD measured during a contraction-induced injury protocol. Normalized limb muscle force after five lengthening contractions resulted in retention of 71 ± 7% of baseline force in finerenone-treated compared with only 51 ± 4% in untreated dystrophic mice. Finerenone treatment also prevented significant reductions in myocardial strain rate (P = 0.0409), the earliest sign of DMD cardiomyopathy. Moreover, treatment with finerenone led to very specific cardiac gene expression changes in clock genes that might modify cardiac pathophysiology in this DMD model. CONCLUSIONS: Finerenone administered as a monotherapy is disease modifying for both skeletal muscle and heart in a preclinical DMD model. These findings support further evaluation of finerenone in DMD clinical trials.

7.
Br J Anaesth ; 123(6): 818-826, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31570162

ABSTRACT

BACKGROUND: Studies in developing animals show that a clinically relevant anaesthesia exposure increases neuronal death and alters brain structure. In the hippocampal dentate gyrus, the anaesthetic isoflurane induces selective apoptosis among roughly 10% of 2-week-old hippocampal granule cells in 21-day-old mice. In this work, we queried whether the 90% of granule cells surviving the exposure might be 'injured' and integrate abnormally into the brain. METHODS: The long-term impact of isoflurane exposure on granule cell structure was studied using a transgenic mouse model fate-mapping approach to identify and label immature granule cells. Male and female mice were exposed to isoflurane for 6 h when the fate-mapped granule cells were 2 weeks old. The morphology of the fate-mapped granule cells was quantified 2 months later. RESULTS: The gross structure of the dentate gyrus was not affected by isoflurane treatment, with granule cells present in the correct subregions. Individual isoflurane-exposed granule cells were structurally normal, exhibiting no changes in spine density, spine type, dendrite length, or presynaptic axon terminal structure (P>0.05). Granule cell axon terminals were 13% larger in female mice relative to males; however, this difference was evident regardless of treatment (difference of means=0.955; 95% confidence interval, 0.37-1.5; P=0.010). CONCLUSIONS: A single, prolonged isoflurane exposure did not impair integration of this age-specific cohort of granule cells, regardless of the animal's sex. Nonetheless, although 2-week-old cells were not affected, the results should not be extrapolated to other age cohorts, which may respond differently.


Subject(s)
Anesthetics, Inhalation/adverse effects , Hippocampus/drug effects , Isoflurane/adverse effects , Neurons/drug effects , Animals , Female , Male , Mice , Mice, Transgenic
8.
J Neuromuscul Dis ; 5(3): 295-306, 2018.
Article in English | MEDLINE | ID: mdl-30010143

ABSTRACT

BACKGROUND: Mineralocorticoid receptor antagonists added to angiotensin converting enzyme inhibitors have shown preclinical efficacy for both skeletal and cardiac muscle outcomes in young sedentary dystrophin-deficient mdx mice also haploinsufficient for utrophin, a Duchenne muscular dystrophy (DMD) model. The mdx genotypic DMD model has mild pathology, making non-curative therapeutic effects difficult to distinguish at baseline. Since the cardiac benefit of mineralocorticoid receptor antagonists has been translated to DMD patients, it is important to optimize potential advantages for skeletal muscle by further defining efficacy parameters. OBJECTIVE: We aimed to test whether therapeutic effects of mineralocorticoid receptor antagonists added to angiotensin converting enzyme inhibitors are detectable using three different reported methods of exacerbating the mdx phenotype. METHODS: We tested treatment with lisinopril and the mineralocorticoid receptor antagonist spironolactone in: 10 week-old exercised, 1 year-old sedentary, and 5 month-old isoproterenol treated mdx mice and performed comprehensive functional and histological measurements. RESULTS: None of the protocols to exacerbate mdx phenotypes resulted in dramatically enhanced pathology and no significant benefit was observed with treatment. CONCLUSIONS: Since endogenous mineralocorticoid aldosterone production from immune cells in dystrophic muscle may explain antagonist efficacy, it is likely that these drugs work optimally during the narrow window of peak inflammation in mdx mice. Exercised and aged mdx mice do not display prolific damage and inflammation, likely explaining the absence of continued efficacy of these drugs. Since inflammation is more prevalent in DMD patients, the therapeutic window for mineralocorticoid receptor antagonists in patients may be longer.


Subject(s)
Aging , Mineralocorticoid Receptor Antagonists/therapeutic use , Muscular Dystrophy, Duchenne/drug therapy , Physical Conditioning, Animal , Adrenergic beta-Agonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Disease Models, Animal , Heart/drug effects , Inflammation/etiology , Inflammation/pathology , Isoproterenol/pharmacology , Mice , Mice, Inbred mdx/genetics , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/diagnostic imaging , Muscular Dystrophy, Duchenne/pathology , Sedentary Behavior , Spironolactone/therapeutic use
9.
J Neuromuscul Dis ; 3(3): 395-404, 2016.
Article in English | MEDLINE | ID: mdl-27822449

ABSTRACT

BACKGROUND: Combined treatment with an angiotensin-converting enzyme inhibitor and a mineralocorticoid receptor (MR) antagonist improved cardiac and skeletal muscle function and pathology in a mouse model of Duchenne muscular dystrophy. MR is present in limb and respiratory skeletal muscles and functions as a steroid hormone receptor. OBJECTIVE: The goals of the current study were to compare the efficacy of the specific MR antagonist eplerenone with the non-specific MR antagonist spironolactone, both in combination with the angiotensin-converting enzyme inhibitor lisinopril. METHODS: Three groups of n=18 dystrophin-deficient, utrophin-haploinsufficient male mice were given chow containing: lisinopril plus spironolactone, lisinopril plus eplerenone, or no drug, from four to 20 weeks-of-age. Eighteen C57BL/10 male mice were used as wild-type controls. In vivo measurements included cardiac magnetic resonance imaging, conscious electrocardiography, and grip strength. From each mouse in the study, diaphragm, extensor digitorum longus, and cardiac papillary muscle force was measured ex vivo, followed by histological quantification of muscle damage in heart, diaphragm, quadriceps, and abdominal muscles. MR protein levels were also verified in treated muscles. RESULTS: Treatment with specific and non-specific MR antagonists did not result in any adverse effects to dystrophic skeletal muscles or heart. Both treatments resulted in similar functional and pathological improvements across a wide array of parameters. MR protein levels were not reduced by treatment. CONCLUSIONS: These data suggest that spironolactone and eplerenone show similar effects in dystrophic mice and support the clinical development of MR antagonists for treating skeletal muscles in Duchenne muscular dystrophy.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Heart/drug effects , Lisinopril/pharmacology , Mineralocorticoid Receptor Antagonists/pharmacology , Muscle, Skeletal/drug effects , Muscular Dystrophy, Animal/drug therapy , Spironolactone/analogs & derivatives , Spironolactone/pharmacology , Animals , Disease Models, Animal , Eplerenone , Gene Knockdown Techniques , Male , Mice , Mice, Inbred mdx , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/physiopathology , Myocardium , Treatment Outcome , Utrophin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...