Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Article in English | MEDLINE | ID: mdl-38681506

ABSTRACT

Background: Essential tremor patients may find that low alcohol amounts suppress tremor. A candidate mechanism is modulation of α6ß3δ extra-synaptic GABAA receptors, that in vitro respond to non-intoxicating alcohol levels. We previously found that low-dose alcohol reduces harmaline tremor in wild-type mice, but not in littermates lacking δ or α6 subunits. Here we addressed whether low-dose alcohol requires the ß3 subunit for tremor suppression. Methods: We tested whether low-dose alcohol suppresses tremor in cre-negative mice with intact ß3 exon 3 flanked by loxP, and in littermates in which this region was excised by cre expressed under the α6 subunit promotor. Tremor in the harmaline model was measured as a percentage of motion power in the tremor bandwidth divided by overall motion power. Results: Alcohol, 0.500 and 0.575 g/kg, reduced harmaline tremor compared to vehicle-treated controls in floxed ß3 cre- mice, but had no effect on tremor in floxed ß3 cre+ littermates that have ß3 knocked out. This was not due to potential interference of α6 expression by the insertion of the cre gene into the α6 gene since non-floxed ß3 cre+ and cre- littermates exhibited similar tremor suppression by alcohol. Discussion: As α6ß3δ GABAA receptors are sensitive to low-dose alcohol, and cerebellar granule cells express ß3 and are the predominant brain site for α6 and δ expression together, our overall findings suggest alcohol acts to suppress tremor by modulating α6ß3δ GABAA receptors on these cells. Novel drugs that target this receptor may potentially be effective and well-tolerated for essential tremor. Highlights: We previously found with the harmaline essential tremor model that GABAA receptors containing α6 and δ subunits mediate tremor suppression by alcohol. We now show that ß3 subunits in α6-expressing cells, likely cerebellar granule cells, are also required, indicating that alcohol suppresses tremor by modulating α6ß3δ extra-synaptic GABAA receptors.


Subject(s)
Essential Tremor , Ethanol , Harmaline , Receptors, GABA-A , Animals , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Harmaline/pharmacology , Essential Tremor/drug therapy , Essential Tremor/genetics , Mice , Ethanol/pharmacology , Central Nervous System Depressants/pharmacology , Disease Models, Animal , Male , Mice, Knockout
2.
Article in English | MEDLINE | ID: mdl-37214542

ABSTRACT

Background: A long-standing question is why essential tremor often responds to non-intoxicating amounts of alcohol. Blood flow imaging and high-density electroencephalography have indicated that alcohol acts on tremor within the cerebellum. As extra-synaptic δ-subunit-containing GABAA receptors are sensitive to low alcohol levels, we wondered whether these receptors mediate alcohol's anti-tremor effect and, moreover, whether the δ-associated GABAA receptor α6 subunit, found abundantly in the cerebellum, is required. Methods: We tested the hypotheses that low-dose alcohol will suppress harmaline-induced tremor in wild-type mice, but not in littermates lacking GABAA receptor δ subunits, nor in littermates lacking α6 subunits. As the neurosteroid ganaxolone also activates extra-synaptic GABAA receptors, we similarly assessed this compound. The harmaline mouse model of essential tremor was utilized to generate tremor, measured as a percentage of motion power in the tremor bandwidth (9-16 Hz) divided by background motion power at 0.25-32 Hz. Results: Ethanol, 0.500 and 0.575 g/kg, and ganaxolone, 7 and 10 mg/kg, doses that do not impair performance in a sensitive psychomotor task, reduced harmaline tremor compared to vehicle-treated controls in wild-type mice but failed to suppress tremor in littermates lacking the δ or the α6 GABAA receptor subunit. Discussion: As cerebellar granule cells are the predominant brain site intensely expressing GABAA receptors containing both α6 and δ subunits, these findings suggest that this is where alcohol acts to suppress tremor. It is anticipated that medications designed specifically to target α6ßδ-containing GABAA receptors may be effective and well-tolerated for treating essential tremor. Highlights: How does alcohol temporarily ameliorate essential tremor? This study with a mouse model found that two specific kinds of GABA receptor subunits were needed for alcohol to work. As receptors with both these subunits are found mainly in cerebellum, this work suggests this is where alcohol acts to suppress tremor.


Subject(s)
Essential Tremor , Receptors, GABA-A , Animals , Humans , Mice , Essential Tremor/drug therapy , Ethanol/pharmacology , gamma-Aminobutyric Acid/metabolism , Harmaline/adverse effects , Tremor/drug therapy
3.
Vaccines (Basel) ; 8(4)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167311

ABSTRACT

BACKGROUND: Immune checkpoint blockade that downregulates T cell evasion for effective immunity has provided a renewed interest in therapeutic cancer vaccines. METHODS: Utilizing murine lung cancer models, we determined: tumor burden, TIL cytolysis, immunohistochemistry, flow cytometry, RNA Sequencing, CD4 T cells, CD8 T cells, CXCL9 chemokine, and CXCL10 chemokine neutralization to evaluate the efficacy of Programmed cell death protein 1 (PD-1) blockade combined with chemokine (C-C motif) ligand 21-dendritic cell tumor antigen (CCL21-DC tumor Ag) vaccine. RESULTS: Anti-PD1 combined with CCL21-DC tumor Ag vaccine eradicated 75% of 12-day established tumors (150 mm3) that was enhanced to 90% by administering CCL21-DC tumor Ag vaccine prior to combined therapy. The effect of combined therapy was blocked by CD4, CD8, CXCL9, and CXCL10 neutralizing antibodies. CONCLUSION: PD-1 blockade therapy plus CCL21-DC tumor Ag vaccine could be beneficial to lung cancer patients.

4.
Vaccines (Basel) ; 8(2)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570793

ABSTRACT

Background: Targeting inhibitory immune checkpoint molecules has highlighted the need to find approaches enabling the activation of immune responses against cancer. Therapeutic vaccination, which induces specific immune responses against tumor antigens (Ags), is an attractive option. Methods: Utilizing a K-RasG12Dp53null murine lung cancer model we determined tumor burden, tumor-infiltrating T cell (TIL) cytolysis, immunohistochemistry, flow cytometry, and CD4 and CD8 depletion to evaluate the efficacy of PD-1 blockade combined with CCL21-DC tumor lysate vaccine. Results: Anti-PD-1 plus CCL21-DC tumor lysate vaccine administered to mice bearing established tumors (150 mm3) increased expression of perforin and granzyme B in the tumor microenvironment (TME), increased tumor-infiltrating T cell (TIL) activity, and caused 80% tumor eradication. Mice with treatment-induced tumor eradication developed immunological memory, enabling tumor rejection upon challenge and cancer-recurrence-free survival. The depletion of CD4 or CD8 abrogated the antitumor activity of combined therapy. PD-1 blockade or CCL21-DC tumor lysate vaccine monotherapy reduced tumor burden without tumor eradication. Conclusion: Immune checkpoint blockade promotes the activity of the therapeutic cancer vaccine. PD-1 blockade plus CCL21-DC tumor lysate vaccine therapy could benefit lung cancer patients.

5.
Adv Exp Med Biol ; 1231: 67-78, 2020.
Article in English | MEDLINE | ID: mdl-32060847

ABSTRACT

CCL21 promotes immune activity in the tumor microenvironment (TME) by colocalizing dendritic cells (DC) and T cells programing ectopic lymph node architectural structures that correlate with cancer prognosis. Innovative strategies to deliver CCL21 in cancer patients will reactivate the downregulated immune activity in the TME. Immune escape mechanisms are upregulated in the TME that promote tumor immune evasion. CCL21 combined with inhibition of dominant pathways of immune evasion will aid in the development of effective immunotherapy for cancer.


Subject(s)
Chemokine CCL21/immunology , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment/immunology , Animals , Dendritic Cells/immunology , Humans , Immunotherapy , T-Lymphocytes/immunology , Tumor Escape/immunology
6.
Article in English | MEDLINE | ID: mdl-30191083

ABSTRACT

Background: Metabolic imaging has revealed excessive cerebellar activity in essential tremor patients. Golgi cells control cerebellar activity by releasing gamma-aminobutyric acid (GABA) onto synaptic and extrasynaptic receptors on cerebellar granule cells. We postulated that the extrasynaptic GABAA receptor-specific agonist THIP (gaboxadol; 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) would suppress tremor in the harmaline model of essential tremor and, since cerebellar extrasynaptic receptors contain α6 and δ subunits, would fail to do so in mice lacking either subunit. Methods: Digitally measured motion power, expressed as 10-16 Hz power (the tremor bandwidth) divided by background 8-32 Hz motion power, was accessed during pre-harmaline baseline, pre-THIP harmaline exposure, and after THIP administration (0, 2, or 3 mg/kg). These low doses were chosen as they did not impair performance on the straight wire test, a sensitive test for psychomotor impairment. Littermate δ wild-type and knockout (Gabrd+/+, Gabrd-/-) and littermate α6 wild-type and knockout (Gabra6+/+, Gabra6-/- ) mice were tested. Results: Gabrd+/+ mice displayed tremor reduction at 3 mg/kg THIP but not 2 mg/kg, and Gabra6+/+ mice showed tremor reduction at 2 and 3 mg/kg. Their respective subunit knockout littermates displayed no tremor reduction compared with vehicle controls at either dose. Discussion: The loss of anti-tremor efficacy with deletion of either δ or α6 GABAA receptor subunits indicates that extrasynaptic receptors containing both subunits, most likely located on cerebellar granule cells where they are highly expressed, mediate tremor suppression by THIP. A medication designed to activate only these receptors may display a favorable profile for treating essential tremor.


Subject(s)
GABA-A Receptor Agonists/pharmacology , Isoxazoles/pharmacology , Receptors, GABA-A/metabolism , Tremor/drug therapy , Tremor/metabolism , Animals , Cerebellum/drug effects , Cerebellum/metabolism , Essential Tremor/metabolism , Female , Harmaline , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Receptors, GABA-A/genetics
7.
Curr Cancer Drug Targets ; 16(7): 618-30, 2016.
Article in English | MEDLINE | ID: mdl-26881932

ABSTRACT

Membrane type 1-matrix metalloproteinase (MT1-MMP, MMP-14) is associated with cancer invasion and metastasis leading to poor patient prognosis. MT1-MMP mediates cancer cell invasion via degradation of basement membrane and extracellular matrix, and induction of cell migration. However, MT1-MMP expression in the cancer stroma can drive invasion of carcinoma cells in vivo, suggesting MT1-MMP may also promote cancer invasiveness via paracrinemediated mechanisms. A major step in cancer cell metastasis is thought to be an epithelial-mesenchymal transition (EMT), in which carcinoma cells evolve from a stationary epithelial phenotype to a more motile mesenchymal phenotype. We demonstrate here that EMT is triggered by MT1-MMP-mediated activation of TGF-. signaling, involving induction of CUTL1 and subsequently, of Wnt5a. Mesenchymal-like cancer cells expressing endogenous MT1-MMP reverted to an epithelial phenotype when MT1-MMP, SMAD4, CUTL1, or Wnt5a expression or TGF-. activity was inhibited. Wnt5a knockdown in MT1- MMP expressing LNCaP cells caused decreased cell migration and cell growth in soft agar. While MT1-MMP expression did not affect total TGF-. level, MT1-MMP catalytic activity increased the availability of active TGF-., enabling MT1-MMP-expressing cells to activate the EMT in nearby cells. MT1-MMP-expressing cells induced co-cultured non-MT1-MMP-expressing cells to undergo EMT by a TGF-.-dependent process. These results highlight a pathway by which tumor invasiveness may be expanded via MT1-MMP-mediated activation of TGF-. signaling, enabling autocrine and paracrine-mediated induction of EMT.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , Matrix Metalloproteinase 14/metabolism , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism , Cell Line, Tumor , Cell Movement/physiology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Homeodomain Proteins/metabolism , Humans , Neoplasm Invasiveness/pathology , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Transcription Factors , Wnt-5a Protein/metabolism
8.
J Natl Cancer Inst ; 105(18): 1402-16, 2013 Sep 18.
Article in English | MEDLINE | ID: mdl-23990668

ABSTRACT

BACKGROUND: Cell migration is a critical determinant of cancer metastasis, and a better understanding of the genes involved will lead to the identification of novel targets aimed at preventing cancer dissemination. KIAA1199 has been shown to be upregulated in human cancers, yet its role in cancer progression was hitherto unknown. METHODS: Clinical relevance was assessed by examining KIAA1199 expression in human cancer specimens. In vitro and in vivo studies were employed to determine the function of KIAA1199 in cancer progression. Cellular localization of KIAA1199 was microscopically determined. SNAP-tag pull-down assays were used to identify binding partner(s) of KIAA1199. Calcium levels were evaluated using spectrofluorometric and fluorescence resonance energy transfer analyses. Signaling pathways were dissected by Western blotting. Student t test was used to assess differences. All statistical tests were two-sided. RESULTS: KIAA1199 was upregulated in invasive breast cancer specimens and inversely associated with patient survival rate. Silencing of KIAA1199 in MDA-MB-435 cancer cells resulted in a mesenchymal-to-epithelial transition that reduced cell migratory ability in vitro (75% reduction; P < .001) and decreased metastasis in vivo (80% reduction; P < .001). Gain-of-function assays further demonstrated the role of KIAA1199 in cell migration. KIAA1199-enhanced cell migration required endoplasmic reticulum (ER) localization, where it forms a stable complex with the chaperone binding immunoglobulin protein (BiP). A novel ER-retention motif within KIAA1199 that is required for its ER localization, BiP interaction, and enhanced cell migration was identified. Mechanistically, KIAA1199 was found to mediate ER calcium leakage, and the resultant increase in cytosolic calcium ultimately led to protein kinase C alpha activation and cell migration. CONCLUSIONS: KIAA1199 serves as a novel cell migration-promoting gene and plays a critical role in maintaining cancer mesenchymal status.


Subject(s)
Calcium/metabolism , Cell Movement , Endoplasmic Reticulum/metabolism , Gene Silencing , Neoplasms/metabolism , Neoplasms/pathology , Proteins/metabolism , Animals , Blotting, Western , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Disease Progression , Epithelial-Mesenchymal Transition , Fluorescence Recovery After Photobleaching , Fluorescence Resonance Energy Transfer , Gene Expression Regulation, Neoplastic , Humans , Hyaluronoglucosaminidase , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Protein Kinase C-alpha/metabolism , Proteins/genetics , Signal Transduction , Spectrometry, Fluorescence , Up-Regulation
9.
Mol Cancer Res ; 9(10): 1305-18, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21849471

ABSTRACT

Oxidative stress caused by high levels of reactive oxygen species (ROS) has been correlated with prostate cancer aggressiveness. Expression of membrane-type 1 matrix metalloproteinase (MT1-MMP), which has been implicated in cancer invasion and metastasis, is associated with advanced prostate cancer. We show here that MT1-MMP plays a key role in eliciting oxidative stress in prostate cancer cells. Stable MT1-MMP expression in less invasive LNCaP prostate cancer cells with low endogenous MT1-MMP increased activity of ROS, whereas MT1-MMP knockdown in DU145 cells with high endogenous MT1-MMP decreased activity of ROS. Expression of MT1-MMP increased oxidative DNA damage in LNCaP and in DU145 cells, indicating that MT1-MMP-mediated induction of ROS caused oxidative stress. MT1-MMP expression promoted a more aggressive phenotype in LNCaP cells that was dependent on elaboration of ROS. Blocking ROS activity using the ROS scavenger N-acetylcysteine abrogated MT1-MMP-mediated increase in cell migration and invasion. MT1-MMP-expressing LNCaP cells displayed an enhanced ability to grow in soft agar that required increased ROS. Using cells expressing MT1-MMP mutant cDNAs, we showed that ROS activation entails cell surface MT1-MMP proteolytic activity. Induction of ROS in prostate cancer cells expressing MT1-MMP required adhesion to extracellular matrix proteins and was impeded by anti-ß1 integrin antibodies. These results highlight a novel mechanism of malignant progression in prostate cancer cells that involves ß1 integrin-mediated adhesion, in concert with MT1-MMP proteolytic activity, to elicit oxidative stress and induction of a more invasive phenotype.


Subject(s)
Matrix Metalloproteinase 14/metabolism , Oxidative Stress/physiology , Prostatic Neoplasms/metabolism , Animals , Disease Progression , Humans , Male , Matrix Metalloproteinase 14/biosynthesis , Matrix Metalloproteinase 14/genetics , Mice , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Reactive Oxygen Species/metabolism , Transfection
10.
Prostate ; 66(2): 124-34, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16161154

ABSTRACT

BACKGROUND: Expression of the inflammatory chemokine CCL5 (RANTES) by tumor cells is thought to correlate with the progression of several cancers. CCL5 was shown to induce breast cancer cell migration, mediated by the receptor CCR5. A CCR5 antagonist was demonstrated to inhibit experimental breast tumor growth. Recently, CCL5 and CCR5 mRNA expression was reported in prostate cancer (PCa) tissues. Herein, we characterized CCL5 and CCR5 expression in cultures of PCa cells and explored possible functions of CCL5 in PCa progression. METHODS: Quantitative RT-PCR, ELISA, and immunohistochemical staining were performed to examine CCL5 expression in prostate cell lines. CCR5 expression was measured by flow cytometry. Proliferation and invasion assays were performed to determine potential functions of CCL5 and CCR5 in PCa. RESULTS: Expression of CCL5 mRNA and protein was found in human PCa cell lines (PC-3; DU-145; LNCaP) and primary prostate adenocarcinoma cells. CCL5 and CCR5 were also detected in human PCa tissues. CCR5 expression was demonstrated on the cell surface of PCa cells, as well as in intracellular pools. Incubation with CCL5 (10-100 ng/ml) induced PCa cell proliferation, and the CCR5 antagonist TAK-779 inhibited CCL5-induced proliferation. CCL5 was found to stimulate PCa cell invasion, and TAK-779 blocked the effects of CCL5. CONCLUSIONS: In light of evidence that inflammation influences the pathogenesis of PCa, these results suggest that inflammatory chemokines, such as CCL5, expressed by prostate cells may act directly on the growth and survival of PCa cells. Chemokine receptor antagonists may thus block autocrine mechanisms of PCa progression.


Subject(s)
Adenocarcinoma/metabolism , Chemokines, CC/analysis , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/metabolism , Receptors, CCR5/analysis , Adenocarcinoma/chemistry , Adenocarcinoma/genetics , Amides/pharmacology , Autocrine Communication , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation/drug effects , Chemokine CCL5 , Chemokines, CC/antagonists & inhibitors , Chemokines, CC/genetics , Chemokines, CC/physiology , Disease Progression , Flow Cytometry , Humans , Immunohistochemistry , Male , Neoplasm Invasiveness/physiopathology , Prostatic Neoplasms/chemistry , Prostatic Neoplasms/genetics , Quaternary Ammonium Compounds/pharmacology , RNA, Messenger/analysis , RNA, Messenger/genetics , Receptors, CCR5/genetics , Receptors, CCR5/physiology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL