Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
Breast Cancer Res Treat ; 196(2): 423-437, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36114323

ABSTRACT

PURPOSE: Circulating blood plasma derived extracellular vesicles (BEVs) containing proteins hold promise for their use as minimally invasive biomarkers for predicting response to cancer therapy. The main goal of this study was to establish the efficiency and utility of the particle purification liquid chromatography (PPLC) BEV isolation method and evaluate the role of BEVs in predicting breast cancer (BC) patient response to neoadjuvant chemotherapy (NAC). METHODS: PPLC isolation was used to separate BEVs from non-EV contaminants and characterize BEVs from 17 BC patients scheduled to receive NAC. Using LC-MS/MS, we compared the proteome of PPLC-isolated BEVs from patients (n = 7) that achieved a pathological complete response (pCR) after NAC (responders [R]) to patients (n = 10) who did not achieve pCR (non-responders [NR]). Luminal MCF7 and basaloid MDA-MB-231 BC cells were treated with isolated BEVs and evaluated for metabolic activity by MTT assay. RESULTS: NR had elevated BEV concentrations and negative zeta potential (ζ-potential) prior to receipt of NAC. Eight proteins were enriched in BEVs of NR. GP1BA (CD42b), PECAM-1 (CD31), CAPN1, HSPB1 (HSP27), and ANXA5 were validated using western blot. MTT assay revealed BEVs from R and NR patients increased metabolic activity of MCF7 and MDA-MB-231 BC cells and the magnitude was highest in MCF7s treated with NR BEVs. CONCLUSION: PPLC-based EV isolation provides a preanalytical separation process for BEVs devoid of most contaminants. Our findings suggest that PPLC-isolated BEVs and the five associated proteins may be established as predictors of chemoresistance, and thus serve to identify NR to spare them the toxic effects of NAC.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Proteomics , Chromatography, Liquid , Platelet Endothelial Cell Adhesion Molecule-1 , Proteome , HSP27 Heat-Shock Proteins/therapeutic use , Tandem Mass Spectrometry , Neoadjuvant Therapy/methods , Plasma
2.
J Neuroinflammation ; 19(1): 225, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36096938

ABSTRACT

BACKGROUND: Early invasion of the central nervous system (CNS) by human immunodeficiency virus (HIV) (Gray et al. in Brain Pathol 6:1-15, 1996; An et al. in Ann Neurol 40:611-6172, 1996), results in neuroinflammation, potentially through extracellular vesicles (EVs) and their micro RNAs (miRNA) cargoes (Sharma et al. in FASEB J 32:5174-5185, 2018; Hu et al. in Cell Death Dis 3:e381, 2012). Although the basal ganglia (BG) is a major target and reservoir of HIV in the CNS (Chaganti et al. in Aids 33:1843-1852, 2019; Mintzopoulos et al. in Magn Reson Med 81:2896-2904, 2019), whether BG produces EVs and the effect of HIV and/or the phytocannabinoid-delta-9-tetrahydrocannabinol (THC) on BG-EVs and HIV neuropathogenesis remain unknown. METHODS: We used the simian immunodeficiency virus (SIV) model of HIV and THC treatment in rhesus macaques (Molina et al. in AIDS Res Hum Retroviruses 27:585-592, 2011) to demonstrate for the first time that BG contains EVs (BG-EVs), and that BG-EVs cargo and function are modulated by SIV and THC. We also used primary astrocytes from the brains of wild type (WT) and CX3CR1+/GFP mice to investigate the significance of BG-EVs in CNS cells. RESULTS: Significant changes in BG-EV-associated miRNA specific to SIV infection and THC treatment were observed. BG-EVs from SIV-infected rhesus macaques (SIV EVs) contained 11 significantly downregulated miRNAs. Remarkably, intervention with THC led to significant upregulation of 37 miRNAs in BG-EVs (SIV-THC EVs). Most of these miRNAs are predicted to regulate pathways related to inflammation/immune regulation, TLR signaling, Neurotrophin TRK receptor signaling, and cell death/response. BG-EVs activated WT and CX3CR1+/GFP astrocytes and altered the expression of CD40, TNFα, MMP-2, and MMP-2 gene products in primary mouse astrocytes in an EV and CX3CR1 dependent manners. CONCLUSIONS: Our findings reveal a role for BG-EVs as a vehicle with potential to disseminate HIV- and THC-induced changes within the CNS.


Subject(s)
Extracellular Vesicles , MicroRNAs , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Basal Ganglia/metabolism , Basal Ganglia/pathology , Dronabinol/pharmacology , Extracellular Vesicles/metabolism , Humans , Macaca mulatta/genetics , Macaca mulatta/metabolism , Matrix Metalloproteinase 2/metabolism , Mice , MicroRNAs/metabolism , Simian Acquired Immunodeficiency Syndrome/drug therapy
3.
Cell Mol Life Sci ; 79(1): 5, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34936021

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) are regulators of cell-cell interactions and mediators of horizontal transfer of bioactive molecules between cells. EV-mediated cell-cell interactions play roles in physiological and pathophysiological processes, which maybe modulated by exposure to pathogens and cocaine use. However, the effect of pathogens and cocaine use on EV composition and function are not fully understood. RESULTS: Here, we used systems biology and multi-omics analysis to show that HIV infection (HIV +) and cocaine (COC) use (COC +) promote the release of semen-derived EVs (SEV) with dysregulated extracellular proteome (exProtein), miRNAome (exmiR), and exmiR networks. Integrating SEV proteome and miRNAome revealed a significant decrease in the enrichment of disease-associated, brain-enriched, and HIV-associated miR-128-3p (miR-128) in HIV + COC + SEV with a concomitant increase in miR-128 targets-PEAK1 and RND3/RhoE. Using two-dimensional-substrate single cell haptotaxis, we observed that in the presence of HIV + COC + SEV, contact guidance provided by the extracellular matrix (ECM, collagen type 1) network facilitated far-ranging haptotactic cues that guided monocytes over longer distances. Functionalizing SEV with a miR-128 mimic revealed that the strategic changes in monocyte haptotaxis are in large part the result of SEV-associated miR-128. CONCLUSIONS: We propose that compositionally and functionally distinct HIV + COC + and HIV-COC- SEVs and their exmiR networks may provide cells relevant but divergent haptotactic guidance in the absence of chemotactic cues, under both physiological and pathophysiological conditions.


Subject(s)
Chemotaxis , Cocaine/pharmacology , Extracellular Vesicles/metabolism , HIV Infections/genetics , MicroRNAs/metabolism , Monocytes/metabolism , Proteome/metabolism , Semen/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Base Sequence , Comorbidity , Gene Regulatory Networks , Humans , MicroRNAs/genetics , Middle Aged , Young Adult
4.
Viruses ; 13(11)2021 11 13.
Article in English | MEDLINE | ID: mdl-34835078

ABSTRACT

Extracellular vesicles (EVs) are cell-derived membranous particles secreted by all cell types (including virus infected and uninfected cells) into the extracellular milieu. EVs carry, protect, and transport a wide array of bioactive cargoes to recipient/target cells. EVs regulate physiological and pathophysiological processes in recipient cells and are important in therapeutics/drug delivery. Despite these great attributes of EVs, an efficient protocol for EV separation from biofluids is lacking. Numerous techniques have been adapted for the separation of EVs with size exclusion chromatography (SEC)-based methods being the most promising. Here, we review the SEC protocols used for EV separation, and discuss opportunities for significant improvements, such as the development of novel particle purification liquid chromatography (PPLC) system capable of tandem purification and characterization of biological and synthetic particles with near-single vesicle resolution. Finally, we identify future perspectives and current issues to make PPLC a tool capable of providing a unified, automated, adaptable, yet simple and affordable particle separation resource.


Subject(s)
Chromatography, Gel , Extracellular Vesicles/chemistry , Bodily Secretions/chemistry , Bodily Secretions/cytology , Chromatography, Ion Exchange , Culture Media/chemistry , Exosomes/chemistry , Humans
5.
Biology (Basel) ; 10(8)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34439952

ABSTRACT

A high pressure apparatus allowing one to study enzyme kinetics under pressure was used to study the self-cleavage activity of the avocado sunblotch viroid. The kinetics of this reaction were determined under pressure over a range up to 300 MPa (1-3000 bar). It appears that the initial rate of this reaction decreases when pressure increases, revealing a positive ΔV≠ of activation, which correlates with the domain closure accompanying the reaction and the decrease of the surface of the viroid exposed to the solvent. Although, as expected, temperature increases the rate of the reaction whose energy of activation was determined, it appeared that it does not significantly influence the ΔV≠ of activation and that pressure does not influence the energy of activation. These results provide information about the structural aspects or this self-cleavage reaction, which is involved in the process of maturation of this viroid. The behavior of ASBVd results from the involvement of the hammerhead ribozyme present at its catalytic domain, indeed a structural motif is very widespread in the ancient and current RNA world.

6.
Viruses ; 12(10)2020 10 01.
Article in English | MEDLINE | ID: mdl-33019624

ABSTRACT

Although extracellular vesicle (EV) surface electrostatic properties (measured as zeta potential, ζ-potential) have been reported by many investigators, the biophysical implications of charge and EV origin remains uncertain. Here, we compared the ζ-potential of human blood EVs (BEVs) and semen EVs (SEVs) from 26 donors that were HIV-infected (HIV+, n = 13) or HIV uninfected (HIV-, n = 13). We found that, compared to BEVs that bear neutral surface charge, SEVs were significantly more negatively charged, even when BEVs and SEVs were from the same individual. Comparison of BEVs and SEVs from HIV- and HIV+ groups revealed subtle HIV-induced alteration in the ζ-potential of EVs, with the effect being more significant in SEVs (∆ζ-potential = -8.82 mV, p-value = 0.0062) than BEVs (∆ζ-potential = -1.4 mV, p-value = 0.0462). These observations were validated by differences in the isoelectric point (IEP) of EVs, which was in the order of HIV + SEV ≤ HIV-SEV ≪ HIV + BEV ≤ HIV-BEV. Functionally, the rate and efficiency of SEV internalization by the human cervical epithelial cell line, primary peripheral blood lymphocytes, and primary blood-derived monocytes were significantly higher than those of BEVs. Mechanistically, removal of sialic acids from the surface of EVs using neuraminidase treatment significantly decreased SEV's surface charge, concomitant with a substantial reduction in SEV's internalization. The neuraminidase effect was independent of HIV infection and insignificant for BEVs. Finally, these results were corroborated by enrichment of glycoproteins in SEVs versus BEVs. Taken together, these findings uncover fundamental tissue-specific differences in surface electrostatic properties of EVs and highlight the critical role of surface charge in EV/target cell interactions.


Subject(s)
Extracellular Vesicles/metabolism , HIV Infections/virology , HIV/physiology , Static Electricity , Virus Internalization , Blood , Cell Communication , Cell Line , Epithelial Cells , Glycocalyx , Humans , Monocytes/virology , Neuraminidase , Semen , Surface Properties
7.
Int J Mol Sci ; 21(15)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731547

ABSTRACT

Acellular particles (extracellular vesicles and membraneless condensates) have important research, drug discovery, and therapeutic implications. However, their isolation and retrieval have faced enormous challenges, impeding their use. Here, a novel size-guided particle purification liquid chromatography (PPLC) is integrated into a turbidimetry-enabled system for dye-free isolation, online characterization, and retrieval of intact acellular particles from biofluids. The chromatographic separation of particles from different biofluids-semen, blood, urine, milk, and cell culture supernatants-is achieved using a first-in-class gradient size exclusion column (gSEC). Purified particles are collected using a fraction collector. Online UV-Vis monitoring reveals biofluid-dependent particle spectral differences, with semen being the most complex. Turbidimetry provides the accurate physical characterization of seminal particle (Sp) lipid contents, sizes, and concentrations, validated by a nanoparticle tracking analysis, transmission electron microscopy, and naphthopyrene assay. Furthermore, different fractions of purified Sps contain distinct DNA, RNA species, and protein compositions. The integration of Sp physical and compositional properties identifies two archetypal membrane-encased seminal extracellular vesicles (SEV)-notably SEV large (SEVL), SEV small (SEVS), and a novel nonarchetypalµµembraneless Sps, herein named membraneless condensates (MCs). This study demonstrates a comprehensive yet affordable platform for isolating, collecting, and analyzing acellular particles to facilitate extracellular particle research and applications in drug delivery and therapeutics. Ongoing efforts focus on increased resolution by tailoring bead/column chemistry for each biofluid type.


Subject(s)
Extracellular Vesicles/chemistry , Chromatography, Liquid , Humans , Male , Nephelometry and Turbidimetry , Semen
8.
Mol Cell Proteomics ; 19(1): 78-100, 2020 01.
Article in English | MEDLINE | ID: mdl-31676584

ABSTRACT

Blood and semen are important body-fluids that carry exosomes for bioinformation transmission. Therefore, characterization of their proteomes is necessary for understanding body-fluid-specific physiologic and pathophysiologic functions. Using systematic multifactorial proteomic profiling, we characterized the proteomes of exosomes and exosome-free fractions from autologous blood and semen from three HIV-uninfected and three HIV-infected participants (total of 24 samples). We identified exosome-based protein signatures specific to blood and semen along with HIV-induced tissue-dependent proteomic perturbations. We validated our findings with samples from 16 additional donors and showed that unlike blood exosomes (BE), semen exosomes (SE) are enriched in clusterin. SE but not BE promote Protein·Nucleic acid binding and increase cell adhesion irrespective of HIV infection. This is the first comparative study of the proteome of autologous BE and SE. The proteins identified may be developed as biomarkers applicable to different fields of medicine, including reproduction and infectious diseases.


Subject(s)
Blood/metabolism , Exosomes/metabolism , HIV Infections/metabolism , HIV-1/genetics , Proteome , Proteomics/methods , Semen/metabolism , Adult , Biomarkers/metabolism , HIV Infections/virology , Humans , Male , Middle Aged , Protein Interaction Maps , RNA, Viral/genetics , Young Adult
9.
J Acquir Immune Defic Syndr ; 83(1): 90-98, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31809364

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) are cell-derived vesicles with diverse functions in intercellular communication including disease and infection, and EVs seem to influence HIV-1 pathogenesis. EVs isolated from HIV-1-uninfected semen (SE), but not blood (BE), contain factors that interfere with HIV-1 infection and replication in target cells. The reason for this dichotomy is unknown. Furthermore, the effect of HIV-1 infection and antiretroviral (ARV) drugs on the anti-HIV-1 effects of SE and BE is unknown. Here, we characterize EVs and EV-free plasma isolated from HIV-infected donor semen and blood and their effects on HIV infection. METHODS: EVs and EV-free plasma were purified from autologous blood and semen of HIV-negative, HIV-infected antiretroviral therapy (ART)-naïve, and HIV-infected ART-treated participants. HIV infection was assessed in a TZM-bl cell reporter system. ARV concentrations were analyzed using liquid chromatography-mass spectrometry. RESULTS: SE isolated from both HIV-negative and HIV-infected, ART-naïve donors inhibited HIV-1 infection, but BE and semen and blood EV-free plasma did not. By contrast, BE, SE, and EV-free plasma from HIV-infected, ART-treated donors inhibited HIV-1. Importantly, exosomes isolated from ART-treated donors contained concentrations of ARV drugs (ART-EVs) at biologically relevant inhibitory levels. CONCLUSIONS: The HIV-1-inhibitory phenotype of SE is independent of donor HIV-1 or ART status, and ARV drugs and their metabolites are SE- and BE-associated in vivo.


Subject(s)
Anti-HIV Agents/pharmacology , Extracellular Vesicles/metabolism , HIV Infections/metabolism , Semen/metabolism , Virus Replication/drug effects , HIV Infections/virology , HIV-1/isolation & purification , HIV-1/physiology , Humans , In Vitro Techniques
10.
Cells ; 8(9)2019 09 03.
Article in English | MEDLINE | ID: mdl-31484431

ABSTRACT

Semen exosomes (SE) from HIV-uninfected (HIV-) individuals potently inhibit HIV infection in vitro. However, morphological changes in target cells in response to SE have not been characterized or have the effect of HIV infection or the use of illicit substances, specifically psychostimulants, on the function of SE been elucidated. The objective of this study was to evaluate the effect of HIV infection, psychostimulant use, and both together on SE-mediated regulation of monocyte function. SE were isolated from semen of HIV- and HIV-infected (HIV+) antiretroviral therapy (ART)-naive participants who reported either using or not using psychostimulants. The SE samples were thus designated as HIV-Drug-, HIV-Drug+, HIV+Drug-, and HIV+Drug+. U937 monocytes were treated with different SEs and analyzed for changes in transcriptome, morphometrics, actin reorganization, adhesion, and chemotaxis. HIV infection and/or use of psychostimulants had minimal effects on the physical characteristics of SE. However, different SEs had diverse effects on the messenger RNA signature of monocytes and rapidly induced monocyte adhesion and spreading. SE from HIV infected or psychostimulants users but not HIV-Drug- SE, stimulated actin reorganization, leading to the formation of filopodia-like structures and membrane ruffles containing F-actin and vinculin that in some cases were colocalized. All SE stimulated monocyte chemotaxis to HIV secretome and activated the secretion of matrix metalloproteinases, a phenotype exacerbated by HIV infection and psychostimulant use. SE-directed regulation of cellular morphometrics and chemotaxis depended on the donor clinical status because HIV infection and psychostimulant use altered SE function. Although our inclusion criteria specified the use of cocaine, humans are poly-drug and alcohol users and our study participants used psychostimulants, marijuana, opiates, and alcohol. Thus, it is possible that the effects observed in this study may be due to one of these other substances or due to an interaction between different substances.


Subject(s)
Cell Adhesion , Chemotaxis , Cocaine-Related Disorders/metabolism , Exosomes/metabolism , HIV Infections/metabolism , Monocytes/metabolism , Semen/metabolism , Actins/metabolism , Adult , Cocaine-Related Disorders/complications , HIV Infections/complications , Humans , Male , Matrix Metalloproteinases/metabolism , Monocytes/physiology , Transcriptome , U937 Cells
11.
J Virol ; 92(21)2018 11 01.
Article in English | MEDLINE | ID: mdl-30111566

ABSTRACT

Exosomes play various roles in host responses to cancer and infective agents, and semen exosomes (SE) inhibit HIV-1 infection and transmission, although the mechanism(s) by which this occurs is unclear. Here, we show that SE block HIV-1 proviral transcription at multiple transcriptional checkpoints, including transcription factor recruitment to the long terminal repeat (LTR), transcription initiation, and elongation. Biochemical and functional studies show that SE inhibit HIV-1 LTR-driven viral gene expression and virus replication. Through partitioning of the HIV-1 RNA, we found that SE reduced the optimal expression of various viral RNA species. Chromatin immunoprecipitation-real-time quantitative PCR (ChIP-RT-qPCR) and electrophoretic mobility shift assay (EMSA) analysis of infected cells identified the human transcription factors NF-κB and Sp1, as well as RNA polymerase (Pol) II and the viral protein transcriptional activator (Tat), as targets of SE. Of interest, SE inhibited HIV-1 LTR activation mediated by HIV-1 or Tat, but not by the mitogen phorbol myristate acetate (PMA) or tumor necrosis factor alpha (TNF-α). SE inhibited the DNA binding activities of NF-κB and Sp1 and blocked the recruitment of these transcription factors and Pol II to the HIV-1 LTR promoter. Importantly, SE directly blocked NF-κB, Sp1, and Pol II binding to the LTR and inhibited the interactions of Tat/NF-κB and Tat/Sp1, suggesting that SE-mediated inhibition of the functional quadripartite complex NF-κB-Sp1-Pol II-Tat may be a novel mechanism of proviral transcription repression. These data provide a novel molecular basis for SE-mediated inhibition of HIV-1 and identify Tat as a potential target of SE.IMPORTANCE HIV is most commonly transmitted sexually, and semen is the primary vector. Despite progress in studies of HIV pathogenesis and the success of combination antiretroviral therapy in controlling viral replication, current therapy cannot completely control sexual transmission. Thus, there is a need to identify effective methods of controlling HIV replication and transmission. Recently, it was shown that human semen contains exosomes that protect against HIV infection in vitro In this study, we identified a mechanism by which semen exosomes inhibited HIV-1 RNA expression. We found that semen exosomes inhibit recruitment of transcription factors NF-κB and Sp1, as well as RNA Pol II, to the promoter region in the 5' long terminal repeat (LTR) of HIV-1. The HIV-1 early protein transcriptional activator (Tat) was a target of semen exosomes, and semen exosomes inhibited the binding and recruitment of Tat to the HIV-1 LTR.


Subject(s)
Exosomes/metabolism , HIV Infections/genetics , HIV-1/genetics , NF-kappa B/metabolism , Semen/metabolism , Sp1 Transcription Factor/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Binding Sites , Exosomes/genetics , Gene Expression Regulation, Viral , HIV Infections/metabolism , HIV Infections/virology , HIV Long Terminal Repeat/genetics , Humans , Male , NF-kappa B/genetics , Promoter Regions, Genetic , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Sp1 Transcription Factor/genetics , Transcription, Genetic , Transcriptional Activation , Virus Replication , tat Gene Products, Human Immunodeficiency Virus/genetics
12.
Sci Rep ; 7: 43418, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28266537

ABSTRACT

The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a "protocell," was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral's isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena.

13.
Life (Basel) ; 4(4): 598-620, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25370531

ABSTRACT

The link between non-enzymatic RNA polymerization and RNA self-replication is a key step towards the "RNA world" and still far from being solved, despite extensive research. Clay minerals, lipids and, more recently, peptides were found to catalyze the non-enzymatic synthesis of RNA oligomers. Herein, a review of the main models for the formation of the first RNA polymers is presented in such a way as to emphasize the cooperation between life's building blocks in their emergence and evolution. A logical outcome of the previous results is a combination of these models, in which RNA polymerization might have been catalyzed cooperatively by clays, lipids and peptides in one multi-component prebiotic soup. The resulting RNAs and oligopeptides might have mutualistically evolved towards functional RNAs and catalytic peptides, preceding the first RNA replication, thus supporting an RNA-peptide world. The investigation of such a system is a formidable challenge, given its complexity deriving from a tremendously large number of reactants and innumerable products. A rudimentary experimental design is outlined, which could be used in an initial attempt to study a quaternary component system.

14.
BMC Biophys ; 7(1): 2, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24655924

ABSTRACT

BACKGROUND: Viroids are the smallest pathogens of plants. To date the structural and conformational details of the cleavage of Avocado sunblotch viroid (ASBVd) and the catalytic role of Mg2+ ions in efficient self-cleavage are of crucial interest. RESULTS: We report the first Raman characterization of the structure and activity of ASBVd, for plus and minus viroid strands. Both strands exhibit a typical A-type RNA conformation with an ordered double-helical content and a C3'-endo/anti sugar pucker configuration, although small but specific differences are found in the sugar puckering and base-stacking regions. The ASBVd(-) is shown to self-cleave 3.5 times more actively than ASBVd(+). Deuteration and temperature increase perturb differently the double-helical content and the phosphodiester conformation, as revealed by corresponding characteristic Raman spectral changes. Our data suggest that the structure rigidity and stability are higher and the D2O accessibility to H-bonding network is lower for ASBVd(+) than for ASBVd(-). Remarkably, the Mg2+-activated self-cleavage of the viroid does not induce any significant alterations of the secondary viroid structure, as evidenced from the absence of intensity changes of Raman marker bands that, however exhibit small but noticeable frequency downshifts suggesting several minor changes in phosphodioxy, internal loops and hairpins of the cleaved viroids. CONCLUSIONS: Our results demonstrate the sensitivity of Raman spectroscopy in monitoring structural and conformational changes of the viroid and constitute the basis for further studies of its interactions with therapeutic agents and cell membranes.

15.
Biochim Biophys Acta ; 1840(6): 1670-5, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24412330

ABSTRACT

BACKGROUND: Viroids are the smallest pathogens known to date. They infect plants and cause considerable economic losses. The members of the Avsunviroidae family are known for their capability to form hammerhead ribozymes (HHR) that catalyze self-cleavage during their rolling circle replication. METHODS: In vitro inhibition assays, based on the self-cleavage kinetics of the hammerhead ribozyme from a Chrysanthemum chlorotic mottle viroid (CChMVd-HHR) were performed in the presence of various putative inhibitors. RESULTS: Aminated compounds appear to be inhibitors of the self-cleavage activity of the CChMVd HHR. Surprisingly the spermine, a known activator of the autocatalytic activity of another hammerhead ribozyme in the presence or absence of divalent cations, is a potent inhibitor of the CChMVd-HHR with Ki of 17±5µM. Ruthenium hexamine and TMPyP4 are also efficient inhibitors with Ki of 32±5µM and IC50 of 177±5nM, respectively. CONCLUSIONS: This study shows that polyamines are inhibitors of the CChMVd-HHR self-cleavage activity, with an efficiency that increases with the number of their amino groups. GENERAL SIGNIFICANCE: This fundamental investigation is of interest in understanding the catalytic activity of HHR as it is now known that HHR are present in the three domains of life including in the human genome. In addition these results emphasize again the remarkable plasticity and adaptability of ribozymes, a property which might have played a role in the early developments of life and must be also of significance nowadays for the multiple functions played by non-coding RNAs.


Subject(s)
Chrysanthemum/virology , Polyamines/pharmacology , RNA, Catalytic/antagonists & inhibitors , Viroids/physiology , Cobalt/pharmacology , Porphyrins/pharmacology , RNA, Catalytic/physiology , Ruthenium Compounds/pharmacology
16.
FEBS J ; 278(19): 3739-47, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21824288

ABSTRACT

The activity of the full-length hammerhead ribozyme requires a tertiary interaction between its distal loops leading to the closure of the molecule and its stabilization in the active conformation. In this study, the conformational changes accompanying the cis-cleavage reaction of Chrysanthemum chlorotic mottle viroid hammerhead ribozyme were investigated by high-pressure experiments on the complete cleavage reaction. Two activation volumes (ΔV(≠)) were measured, pointing to the presence of two different populations of molecules corresponding to fast-cleaving and slow-cleaving ribozymes in the reaction mixture. The fast population, with a small ΔV(≠) of 2.6 mL·mol(-1), most likely represents molecules in the near-active conformation, whereas the slow population, with a larger ΔV(≠) of 11.6 mL·mol(-1 , represents molecules that need a larger conformational change to induce activity. In addition, pH-dependence experiments suggest that the group whose deprotonation is required for activity intervenes in the formation of the transition state or in the chemistry of the reaction, but not in the conformational change that precedes it.


Subject(s)
Chrysanthemum/virology , Plant Viruses/enzymology , Plant Viruses/genetics , RNA, Catalytic/metabolism , Viroids/enzymology , Viroids/genetics , Animals , Base Sequence , Hydrogen-Ion Concentration , Hydrostatic Pressure , Magnesium/chemistry , Molecular Sequence Data , Nucleic Acid Conformation , Osmotic Pressure , RNA, Catalytic/chemistry , RNA, Catalytic/genetics
17.
FEBS J ; 276(9): 2574-88, 2009 May.
Article in English | MEDLINE | ID: mdl-19476496

ABSTRACT

The RNA world hypothesis assumes that life arose from ancestral RNA molecules, which stored genetic information and catalyzed chemical reactions. Although RNA catalysis was believed to be restricted to phosphate chemistry, it is now established that the RNA has much wider catalytic capacities. In this respect, we devised, in a previous study, two hairpin ribozymes (adenine-dependent hairpin ribozyme 1 and adenine-dependent hairpin ribozyme 2) that require adenine as cofactor for their reversible self-cleavage. We have now used high hydrostatic pressure to investigate the role of adenine in the catalytic activity of adenine-dependent hairpin ribozyme 1. High-pressure studies are of interest because they make it possible to determine the volume changes associated with the reactions, which in turn reflect the conformational modifications and changes in hydration involved in the catalytic mechanism. They are also relevant in the context of piezophilic organisms, as well as in relation to the extreme conditions that prevailed at the origin of life. Our results indicate that the catalytic process involves a transition state whose formation is accompanied by a positive activation volume and release of water molecules. In addition, competition experiments with adenine analogs strongly suggest that exogenous adenine replaces the adenine present at the catalytic site of the wild-type hairpin ribozyme.


Subject(s)
Adenine/chemistry , RNA, Catalytic/chemistry , Adenine/metabolism , Base Sequence , Binding Sites , Catalysis , Hydrostatic Pressure , Kinetics , Magnesium/chemistry , Magnesium/metabolism , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Catalytic/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL