Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(13): 37332-37343, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36571676

ABSTRACT

Photocatalysis is considered a useful technique employed for the dye degradation through solar light, visible or UV light irradiation. In this study, TiO2, g-C3N4, and TiO2-g-C3N4 nanocomposites were successfully synthesized and studied for their ability to degrade Rhodamine B (RhB) and Reactive Orange 16 (RO-16), when exposed to visible light. The analytical techniques including XRD, TEM, SEM, DRS, BET, XPS, and fluorescence spectroscopy were used to explore the characteristics of all the prepared semiconductors. The photocatalytic performance of synthesized materials has been tested against both the selected dyes, and various experimental parameters were studied. The experimental results demonstrate that, in comparison to other fabricated composites, the TiO2-g-C3N4 composite with the optimal weight ratio of g-C3N4 (15 wt%) to TiO2 has shown outstanding degrading efficiency against RhB (89.62%) and RO-16 (97.20%). The degradation experiments were carried out at optimal conditions such as a catalyst load of 0.07 g, a dye concentration of 50 ppm, and a temperature of 50 ℃ at neutral pH in 90 min. In comparison to pure TiO2 and g-C3N4, the TiO2-g-C3N4, a semiconductor, has shown higher degradation efficiency due to its large surface area and decreased electron-hole recombination. The scavenger study gave an idea about the primary active species (-OH radicals), responsible for dye degradation. The reusability of TiO2-g-C3N4 was also examined in order to assess the composite sustainability.


Subject(s)
Coloring Agents , Light , Ultraviolet Rays , Titanium/chemistry
2.
J Mol Graph Model ; 117: 108302, 2022 12.
Article in English | MEDLINE | ID: mdl-36049401

ABSTRACT

In this project, we have investigated the possibility of mimicking the natural photosynthesis, as well as sensing and adsorption application of aluminum decorated graphitic C3N4 (Al-g-C3N4) QDs (toward some air pollutants containing CO, CO2, and SO2). The results of the potential energy surface (PES) studies show that in all three adsorption processes, the energy changes are negative (-10.70 kcal mol-1, -16.81 kcal mol-1, and -79.97 kcal mol-1 for CO, CO2, and SO2 gasses, respectively). Thus, all of the adsorption processes (mainly SO2) are spontaneous. Moreover, the frontier molecular orbital (FMO) investigations indicate that the Al-g-C3N4 QD could be used as a suitable semiconductor sensor for detection of CO, and CO2 (as carbon oxides) in one hand, and SO2 gaseous species on the other hand. Finally, the results reveal that those QDs could be applied for artificial photosynthesis (in presence of CO2; Δµh-e = 1.43 V), and for water splitting process for the H2 generation (Δµh-e = 1.23 V) as a clean fuel for near future.


Subject(s)
Air Pollutants , Air Pollution/prevention & control , Aluminum/chemistry , Graphite , Photosynthesis , Adsorption , Carbon , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Carbon Monoxide/chemistry , Carbon Monoxide/metabolism , Catalysis , Nitrogen , Oxides , Sulfur Dioxide/chemistry , Sulfur Dioxide/metabolism , Water
SELECTION OF CITATIONS
SEARCH DETAIL