Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
BMC Infect Dis ; 24(1): 554, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831286

ABSTRACT

BACKGROUND AND OBJECTIVE(S): CRISPR-Cas is a prokaryotic adaptive immune system that protects bacteria and archaea against mobile genetic elements (MGEs) such as bacteriophages plasmids, and transposons. In this study, we aimed to assess the prevalence of the CRISPR-Cas systems and their association with antibiotic resistance in one of the most challenging bacterial pathogens, Klebsiella pneumoniae. MATERIALS AND METHODS: A total of 105 K. pneumoniae isolates were collected from various clinical infections. Extended-spectrum ß-lactamases (ESBLs) phenotypically were detected and the presence of ESBL, aminoglycoside-modifying enzymes (AME), and CRISPR-Cas system subtype genes were identified using PCR. Moreover, the diversity of the isolates was determined by enterobacterial repetitive intergenic consensus (ERIC)-PCR. RESULTS: Phenotypically, 41.9% (44/105) of the isolates were found to be ESBL producers. A significant inverse correlation existed between the subtype I-E CRISPR-Cas system's presence and ESBL production in K. pneumoniae isolates. Additionally, the frequency of the ESBL genes blaCTX-M1 (3%), blaCTX-M9 (12.1%), blaSHV (51.5%), and blaTEM (33.3%), as well as some AME genes such as aac(3)-Iva (21.2%) and ant(2'')-Ia (3%) was significantly lower in the isolates with the subtype I-E CRISPR-Cas system in comparison to CRISPR-negative isolates. There was a significant inverse correlation between the presence of ESBL and some AME genes with subtype I-E CRISPR-Cas system. CONCLUSION: The presence of the subtype I-E CRISPR-Cas system was correlated with the antibiotic-resistant gene (ARGs). The isolates with subtype I-E CRISPR-Cas system had a lower frequency of ESBL genes and some AME genes than CRISPR-negative isolates.


Subject(s)
Anti-Bacterial Agents , CRISPR-Cas Systems , Klebsiella Infections , Klebsiella pneumoniae , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Humans , beta-Lactamases/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Prevalence , Male , Female , Middle Aged
2.
Heliyon ; 10(5): e26809, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38449645

ABSTRACT

Role of clustered regularly interspaced short palindromic repeats (CRISPR)-like sequences in antibiotic resistance and biofilm formation isn't clear. This study investigated association of CRISPR-like sequences with antibiotic resistance and biofilm formation in H. pylori isolates. Thirty-six of H. pylori isolates were studied for existence of CRISPR-like sequences using PCR method and their correlation with biofilm formation and antibiotic resistance. Microtiter-plate technique was utilized for investigating antibiotic resistance profile of isolates against amoxicillin, tetracycline, metronidazole and clarithromycin. Biofilm formation of isolates was analyzed by microtiter-plate-based-method. Out of 23 CRISPR-like positive isolates, 19 had ability of biofilm formation and 7 of 13 CRISPR-like negative isolates were able to form biofilm (Pvalue = 0.445). In CRISPR-like positive isolates, 11 (48%), 18 (78%), 18 (78%) and 23 (100%) were resistant to amoxicillin, tetracycline, metronidazole and clarithromycin, respectively. Since CRISPR-like sequences have role in antibiotic resistance, may be applied as genetic markers of antibiotic resistance. But there was no substantial correlation between biofilm formation and existence of CRISPR-like sequences. These results indicate possible importance of CRISPR-like sequences on acquisition of resistance to antibiotics in this bacterium.

3.
Heliyon ; 9(7): e17880, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539246

ABSTRACT

Sepsis is a complex clinical disorder with heterogeneous etiological factors. Given its high mortality rate, it is considered a global health issue. Recently, the link between gut microbiota and their metabolites, especially short-chain fatty acids, in the pathophysiology of sepsis has been reported. However, there are few findings to confirm this relationship. This study aimed to evaluate some key gut microbiota members, pathogenic bacteria, and short-chain fatty acids in non-ICU patients with sepsis caused by bacteremia compared to a control group. In this case-control study, 45 stool samples from patients with sepsis and 15 healthy persons were collected from October 2021 to August 2022 in Tabriz, Iran. The position of some gut microbiota members and the main short-chain fatty acids concentration were assessed in the two groups by the Q-PCR and the high-performance liquid chromatography system. Faecalibacterium prausnitzii and Bifidobacterium sp. As bacterial with protective features in non-ICU patients with sepsis decreased significantly. Moreover, the concentrations of acetic acid and propionic acid significantly decreased in this group compared to the healthy volunteers. In contrast, the pathogenic bacteria members such as Enterobacteriaceae and Bacteroides sp. Increased significantly in the patients compared to the healthy individuals. The concentration of butyric acid decreased in the patients, but this change was not significant in the two groups. Protective and immune functions of F. prausnitzii and Bifidobacterium sp., as well as acetate and propionate, are evident. In this investigation, this profile was significantly reduced in non-ICU patients with sepsis compared to the control group.

4.
Health Sci Rep ; 6(7): e1411, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37425235

ABSTRACT

Background and Aims: SARS-CoV-2, as a new pandemic disease, affected the world. Short-chain fatty acids (SCFAs) such as acetic, propionic, and butyric acids are the main metabolites of human gut microbiota. The positive effects of SCFAs have been shown in infections caused by respiratory syncytial virus, adenovirus, influenza, and rhinovirus. Therefore, this study aimed to evaluate the concentration of SCFAs in patients with SARS-CoV-2 compared with the healthy group. Methods: This research was designed based on a case and control study. Twenty healthy individuals as the control group and 20 persons admitted to the hospital with a positive test of coronavirus disease (COVID-19) real-time polymerase chain reaction were included in the study as the patient group from September 2021 to October 2021, in Tabriz, Iran. Stool specimens were collected from volunteers, and analysis of SCFAs was carried out by a high-performance liquid chromatography system. Results: The amount of acetic acid in the healthy group was 67.88 ± 23.09 µmol/g, while in the group of patients with COVID-19 was 37.04 ± 13.29 µmol/g. Therefore, the concentration of acetic acid in the patient group was significantly (p < 0.001) lower than in the healthy group. Propionic and butyric acid were present in a higher amount in the control group compared with the case group; however, this value was not statistically significant (p > 0.05). Conclusion: This study showed that the concentration of acetic acid as the metabolite caused by gut microbiota is significantly disturbed in patients with COVID-19. Therefore, therapeutic interventions based on gut microbiota metabolites in future research may be effective against COVID-19.

5.
Heliyon ; 9(3): e14562, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36967966

ABSTRACT

Several disorders have been linked to modifications in the gut microbial imbalance, intestinal epithelium, and host immune system. In this regard, microbiota derived short-chain fatty acids (SCFAs) play a key function in the regulation of histone deacetylases (HDACs), which affect modulation of immunity and regulation of inflammatory responses in the intestine and other organs. Studies examining the metabolites produced by polymicrobial bacterial vaginosis (BV) states and Lactobacillus-dominated microbiota have noted a dramatic reduction of lactic acid and a shift toward SCFA synthesis. Along with higher levels of SCFAs, acetate is typically the main metabolite in the cervicovaginal fluid of women with symptomatic bacterial vaginosis. The fact that SCFAs made by the vaginal microbiota have been shown to exhibit antibacterial and immune-modulating properties suggests that they may have promise as indicators of disease and/or disease susceptibility. In this review, we overview and summarize the current findings on the detrimental or protective roles of microbiota metabolites especially SCFAs in the health and disease of the female reproductive system.

6.
J Intensive Care Med ; 38(1): 121-131, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35603752

ABSTRACT

Sepsis, as an important public health concern, is one of the leading causes of death in hospitals around the world, accounting for 25% of all deaths. Nowadays, several factors contribute to the development of sepsis. The role of the gut microbiota and the response state of the aberrant immune system is dominant. The effect of the human microbiome on health is undeniable, and gut microbiota is even considered a body organ. It is now clear that the alteration in the normal balance of the microbiota (dysbiosis) is associated with a change in the status of immune system responses. Owing to the strong association between the gut microbiota and its metabolites particularly short-chain fatty acids with many illnesses, the gut microbiota has a unique position in the research of microbiologists and even clinicians. This review aimed to analyze studies' results on the association between microbiota and sepsis, with a substantial understanding of their relationship. As a result, an extensive and comprehensive search was conducted on this issue in existing databases.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Sepsis , Humans , Gastrointestinal Microbiome/physiology , Dysbiosis , Immune System
7.
Microbiol Res ; 266: 127245, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36347103

ABSTRACT

Numerous studies have almost proven the beneficial effects of gut microbiota in various aspects of human health, and even the gut microbiota is known as a new and forgotten organ. Akkermansia muciniphila, as a member of the gut microbiota, is considered a bacterium with probiotic properties; consequently, it has a remarkable position in microbiome research. This bacterium accounts for about 1-4 % of the total fecal microbiota population and is also considered a health marker. The accumulated evidence has shown a significant association between A. muciniphila and several disorders and diseases, such as obesity, fatty liver disease, diabetes, and even behavioral disorders. On the other hand, the beneficial effects of A. muciniphila in different studies have shown, such as protective role against pathogenic agents, antitumor properties, tight junctions' improvement, reduction of inflammation, gut permeability, and boosting adaptive immune responses. In this review, based on the available evidence and the latest research, we comprehensively evaluated the impact of A. muciniphila on host health from three points of view: metabolic, protective, and immune functions, as well as the possible mechanisms of each process.


Subject(s)
Gastrointestinal Microbiome , Verrucomicrobia , Humans , Verrucomicrobia/metabolism , Akkermansia , Immunity
8.
Crit Rev Food Sci Nutr ; : 1-10, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36250549

ABSTRACT

Probiotics and postbiotics mechanisms of action and applications in early-onset colorectal cancer (EOCRC) prevention and treatment have significant importance but are a matter of debate and controversy. Therefore, in this review, we aimed to define the probiotics concept, advantages and limitations in comparison to postbiotics, and proposed mechanisms of anti-tumor action in EOCRC prevention and treatment of postbiotics. Biotics (probiotics, prebiotics, and postbiotics) could confer the health benefit by affecting the host gut microbiota directly and indirectly. The main mechanisms of action of probiotics in exerting anticancer features include immune system regulation, inhibition of cancer cell propagation, gut dysbiosis restoration, anticancer agents' production, gut barrier function renovation, and cancer-promoting agents' reduction. Postbiotics are suggested to have different mechanisms of action to restore eubiosis against EOCRC, including modulation of gut microbiota composition, gut microbial metabolites regulation, and intestinal barrier function improvement via different features such as immunomodulatory, anti-inflammatory, antioxidant, and anti-proliferative properties. A better understanding of postbiotics challenges and mechanism of action in therapeutic applications will allow us to sketch accurate trials in order to use postbiotics as bio-therapeutics in EOCRC.

9.
Ann Clin Microbiol Antimicrob ; 20(1): 49, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34321002

ABSTRACT

Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are one of the factors which can contribute to limiting the development and evolution of antibiotic resistance in bacteria. There are three genomic loci of CRISPR-Cas in Enterococcus faecalis. In this study, we aimed to assess correlation of the CRISPR-Cas system distribution with the acquisition of antibiotic resistance among E. faecalis isolates. A total of 151 isolates of E. faecalis were collected from urinary tract infections (UTI) and dental-root canal (DRC). All isolates were screened for phenotypic antibiotic resistance. In addition, antibiotic resistance genes and CRISPR loci were screened by using polymerase chain reaction. Genomic background of the isolates was identified by random amplified polymorphic DNA (RAPD)-PCR. The number of multidrug-resistant E. faecalis strains were higher in UTI isolates than in DRC isolates. RAPD-PCR confirmed that genomic background was diverse in UTI and DRC isolates used in this study. CRISPR loci were highly accumulated in gentamycin-, teicoplanin-, erythromycin-, and tetracycline-susceptible strains. In concordance with drug susceptibility, smaller number of CRISPR loci were identified in vanA, tetM, ermB, aac6'-aph(2"), aadE, and ant(6) positive strains. These data indicate a negative correlation between CRISPR-cas loci and antibiotic resistance, as well as, carriage of antibiotic resistant genes in both of UTI and DRC isolates.


Subject(s)
Anti-Bacterial Agents/pharmacology , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Drug Resistance, Multiple, Bacterial/genetics , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Bacterial Proteins/genetics , Enterococcus faecalis/isolation & purification , Genotype , Gentamicins , Humans , Urinary Tract Infections
10.
Iran J Basic Med Sci ; 23(5): 691-698, 2020 May.
Article in English | MEDLINE | ID: mdl-32742608

ABSTRACT

OBJECTIVES: Staphylococcus aureus can cause several infections. Its capability to form biofilm has been reported to be a vital property involved in the bacteria's pathogenesis. Various genes contributing to biofilm formation have not yet been completely clarified. This study was designed to evaluate the factors influencing adherence and biofilm formation in S. aureus isolated from paediatric patients. MATERIALS AND METHODS: One hundred and ninety-seven S. aureus isolates were obtained from pediatric patients and confirmed with phenotypic and molecular examinations. Antimicrobial susceptibility testing and biofilm formation were evaluated using standard methods. The genes encoding adhesion and virulence factors were investigated by the PCR method. RESULTS: The most efficient antibiotics against S. aureus isolates were vancomycin and linezolid. Approximately, 54.2% of MSSA and 85.6% of MRSA isolates were biofilm producers according to the microtiter test. Our analysis indicated that MRSA isolates are better able to form biofilm compared with MSSA isolates. All isolates harbored clfA, fnbpA, icaA, icaB, icaC, and icaD, while clfB, fnbB, hlg, and pvl were detected in 99.5%, 42.1%, 97.5%, and 5.6% of isolates, respectively. In addition, a significant difference was found in fnhB gene and biofilm formation. CONCLUSION: Our findings showed a significant correlation between mecA and pvl genes and MRSA and biofilm formation in S. aureus isolates. Additionally, this study indicated the significant role of the fnhB gene as a major marker for S. aureus biofilm formation. Therefore, further experiments are warranted to exactly elucidate the function of the fnhB gene in the formation of biofilm.

11.
Infect Genet Evol ; 73: 255-260, 2019 09.
Article in English | MEDLINE | ID: mdl-31102739

ABSTRACT

Staphylococcus aureus is a major human pathogen causing infections with high morbidity and mortality in both healthcare and community settings. The accessory gene regulator (Agr) is a key genetic element controlling the expression of numerous virulence factors in S. aureus. The significance of a functional Agr system in clinical S. aureus isolates derived from pediatric wound infections is still unclear. Therefore, the present study was conducted to identify virulence genes and determine Agr functionality from this cohort of patients. A total of 48 S. aureus wound isolates were collected from patients referred to Tehran Children's Medical Center Hospital from April 2017 to April 2018. In addition, in vitro antimicrobial susceptibility of the isolates was assessed using the disk diffusion and E-test methods. Conventional PCR was performed for the detection of toxins (tsst-1, hla, hlb, hld, eta, etb, etd, edin-A, edin-B, edin-C) and Agr typing (agrI, agrII, agrIII, agrIV). Agr functionality was assessed by quantitative reverse transcriptase real-time PCR (qRT-PCR). All S. aureus isolates were found to be susceptible to linezolid and vancomycin. The most frequently detected toxin gene was eta (100%), and the most prevalent Agr type was agrIII (56.3%). Importantly, qRT-PCR revealed that Agr was functional in 28 (58%) of wound isolates. Consequently, our data suggests that a functional Agr system may not be required for the development of S. aureus wound infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/genetics , Wound Infection/microbiology , Child , Drug Resistance, Bacterial , Humans , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...