Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Struct Funct ; 48(2): 211-221, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37766570

ABSTRACT

Secretory pathway proteins are cotranslationally translocated into the endoplasmic reticulum (ER) of metazoan cells through the protein channel, translocon. Given that there are far fewer translocons than ribosomes in a cell, it is essential that secretory protein-translating ribosomes only occupy translocons transiently. Therefore, if translocons are obstructed by ribosomes stalled or slowed in translational elongation, it possibly results in deleterious consequences to cellular function. Hence, we investigated how translocon clogging by stalled ribosomes affects mammalian cells. First, we constructed ER-destined translational arrest proteins (ER-TAP) as an artificial protein that clogged the translocon in the ER membrane. Here, we show that the translocon clogging by ER-TAP expression activates triage of signal sequences (SS) in which secretory pathway proteins harboring highly efficient SS are preferentially translocated into the ER lumen. Interestingly, the translocon obstructed status specifically activates inositol requiring enzyme 1α (IRE1α) but not protein kinase R-like ER kinase (PERK). Given that the IRE1α-XBP1 pathway mainly induces the translocon components, our discovery implies that lowered availability of translocon activates IRE1α, which induces translocon itself. This results in rebalance between protein influx into the ER and the cellular translocation capacity.Key words: endoplasmic reticulum, translocation capacity, translocon clogging, IRE1, signal sequence.


Subject(s)
Endoribonucleases , Protein Serine-Threonine Kinases , Animals , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Sorting Signals , Triage , Endoplasmic Reticulum Stress , Mammals/metabolism
2.
Genes Cells ; 16(9): 927-37, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21794029

ABSTRACT

Influenza virus RNA-dependent RNA polymerase is composed of three viral proteins, PB1, PB2, and PA. The host protein Ebp1 (ErbB3-binding protein1) interacts with PB1, and inhibits both in vitro RNA synthesis and virus replication. On Western blotting, the induction of Ebp1 was observed after influenza virus infection. To understand the induction of Ebp1 by influenza virus infection, we introduced a series of deletions within the 981-nucleotide long sequence located upstream of the Ebp1 gene (-664 to +317 nt from the transcription initiation site) and ligated them to the GFP gene. GFP expression assays indicated that the 981-nt upstream region was required for expression of GFP in not all cells but some cells. Microscopic analysis of the transformants showed that GFP expression was up-regulated by the influenza virus infection. Furthermore, quantitative real-time PCR indicated that influenza virus infection induced Ebp1 mRNA expression. Our data showed that (i) the newly synthesized vRNP of influenza virus induces Ebp1 expression; (ii) the Ebp1 promoter localizes between -664 nt and the initiation site of the Ebp1 gene, +317-nt long sequence in the noncoding region is required for regulation of Ebp1 gene expression; and (iii) Ebp1 expression level is correlated with virus protein expression level.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Influenza A virus/physiology , RNA-Binding Proteins/genetics , Base Sequence , Cell Line , Gene Expression , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Influenza A virus/genetics , Influenza A virus/metabolism , Promoter Regions, Genetic/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcription, Genetic , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL