Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34371667

ABSTRACT

Colorado potato beetle (CPB) is an economic pest of potato that has developed resistance to all classes of chemical insecticides, thus requiring alternative control measures. As a potential solution, entomopathogenic nematodes (EPNs) have proven effective in suppressing this pest, but their efficacy against overwintering generations of CPB in Croatia has not been sufficiently researched. The aim of this two-year (2018-2019) field study was to determine the efficacy of Steinernema feltiae and Steinernema carpocapsae applied to overwintering CPB adults. EPNs were applied at three doses (7.5 mil./10 m2, 5.0 mil./10 m2 (the recommended dose) and 2.5 mil./10 m2) by watering the soil where the adults were overwintering. The first-year results were satisfactory for both EPNs: the efficacy of S. feltiae ranged from 79.03% to 100.00%, while the efficacy of S. carpocapsae ranged from 77.32% to 96.22%. In the second year, the highest efficacy (69.57%) was obtained using the recommended dose of S. feltiae. Although the results are not consistent across the two years of our study and suggest further research, they indicate that EPNs have great potential in controlling overwintering CPB generations to reduce first generation abundance and damage, and also to prevent the spread of new generations to surrounding potato growing areas.

2.
Plants (Basel) ; 9(10)2020 Oct 18.
Article in English | MEDLINE | ID: mdl-33080953

ABSTRACT

Overwintering success and weather conditions are the key factors determining the abundance and intensity of the attack of the first generation of European corn borers (ECB). The tolerance of maize to the 1st generation of ECB infestation is often considered to be connected with the maize maturity time. The aims of this research were (I) to examine the reactions of different maize FAO maturity groups in term of the damage caused by ECB larvae, (II) to analyze the influence of four climatic regions of Croatia regarding the damage caused by ECB larvae, and (III) to correlate observed damage between FAO maturity groups and weather conditions. First ECB generation damage has been studied in the two-year field trial with 32 different hybrids divided into four FAO maturity groups (eight per group) located at four locations with different climatic conditions. The results showed a lack of correlation between the FAO maturity group and the percent of damage. The percent of damage was positively correlated with the average air temperature in June (r = 0.59 for 2017 and r = 0.74 in 2018, p = 0.0001) within the range from 20 to 24.5 °C and was negatively correlated with the relative air humidity (r = -0.58 in 2017 and r = -0.77 in 2018, p = 0.0001) within the range of 50% to 80%. Our results provide a better understanding of the different factors that influence ECB damage. The obtained data could be used to predict the damage from the first generation of ECB under the weather conditions of different regions.

3.
Insects ; 11(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32882790

ABSTRACT

Colorado potato beetle, CPB (Leptinotarsa decemlineata Say), is one of the most important pests of the potato globally. Larvae and adults can cause complete defoliation of potato plant leaves and can lead to a large yield loss. The insect has been successfully suppressed by insecticides; however, over time, has developed resistance to insecticides from various chemical groups, and its once successful control has diminished. The number of available active chemical control substances is decreasing with the process of testing, and registering new products on the market are time-consuming and expensive, with the possibility of resistance ever present. All of these concerns have led to the search for new methods to control CPB and efficient tools to assist with the detection of resistant variants and monitoring of resistant populations. Current strategies that may aid in slowing resistance include gene silencing by RNA interference (RNAi). RNAi, besides providing an efficient tool for gene functional studies, represents a safe, efficient, and eco-friendly strategy for CPB control. Genetically modified (GM) crops that produce the toxins of Bacillus thuringiensis (Bt) have many advantages over agro-technical, mechanical, biological, and chemical measures. However, pest resistance that may occur and public acceptance of GM modified food crops are the main problems associated with Bt crops. Recent developments in the speed, cost, and accuracy of next generation sequencing are revolutionizing the discovery of single nucleotide polymorphisms (SNPs) and field of population genomics. There is a need for effective resistance monitoring programs that are capable of the early detection of resistance and successful implementation of integrated resistance management (IRM). The main focus of this review is on new technologies for CPB control (RNAi) and tools (SNPs) for detection of resistant CPB populations.

4.
Insects ; 11(1)2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31947812

ABSTRACT

The codling moth, Cydia pomonella L., is a serious insect pest in pome fruit production worldwide with a preference for apple. The pest is known for having developed resistance to several chemical groups of insecticides, making its control difficult. The control and management of the codling moth is often hindered by a lack of understanding about its biology and ecology, including aspects of its population genetics. This review summarizes the information about the origin and biology of the codling moth, describes the mechanisms of resistance in this pest, and provides an overview of current research of resistant pest populations and genetic research both in Europe and globally. The main focus of this review is on non-pesticide control measures and anti-resistance strategies which help to reduce the number of chemical pesticides used and their residues on food and the local environment. Regular monitoring for insecticide resistance is essential for proactive management to mitigate potential insecticide resistance. Here we describe techniques for the detection of resistant variants and possibilities for monitoring resistance populations. Also, we present our present work on developing new methods to maintain effective control using appropriate integrated resistance management (IRM) strategies for this economically important perennial pest.

5.
Insects ; 10(10)2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31546682

ABSTRACT

The codling moth (CM) (Cydia pomonella L.) is the most important apple pest in Croatia and Europe. Owing to its economic importance, it is a highly controlled species and the intense selection pressure the species is under has likely caused it to change its phenotype in response. Intensive application of chemical-based insecticide treatments for the control of CM has led to resistance development. In this study, the forewing morphologies of 294 CM (11 populations) were investigated using geometric morphometric procedures based on the venation patterns of 18 landmarks. Finite element method (FEM) was also used to further investigate the dispersal capabilities of moths by modelling wing deformation versus wind speed. Three treatments were investigated and comprised populations from integrated and ecological (susceptible) orchards and laboratory-reared non-resistant populations. Forewing shape differences were found among the three treatment populations investigated. Across all three population treatments, the movement of landmarks 1, 7, 8, 9, and 12 drove the wing shape differences found. A reliable pattern of differences in forewing shape as related to control practice type was observed. FEM revealed that as wind speed (m/s-1) increased, so too did wing deformation (mm) for CM from each of the three treatments modelled. CM from the ecological orchards displayed the least deformation followed by integrated then laboratory-reared CM, which had the highest wing deformation at the highest wind speeds. This study presents an affordable and accessible technique that reliably demonstrates wing shape differences, and thus its use as a population biomarker to detect resistance should be further investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...