Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
J Plant Res ; 129(5): 853-862, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27324202

ABSTRACT

Heterophyllous aquatic plants produce aerial (i.e., floating and terrestrial) and submerged leaves-the latter lack stomata-while homophyllous plants contain only submerged leaves, and cannot survive on land. To identify whether differences in morphogenetic potential and/or physiological stress responses are responsible for variation in phenotypic plasticity between two plants types, responses to abscisic acid (ABA) and salinity stress were compared between the closely related, but ecologically diverse pondweeds, Potamogeton wrightii (heterophyllous) and P. perfoliatus (homophyllous). The ABA-treated (1 or 10 µM) P. wrightii plants exhibited heterophylly and produced leaves with stomata. The obligate submerged P. perfoliatus plants were able to produce stomata on their leaves, but there were no changes to leaf shape, and stomatal production occurred only at a high ABA concentration (10 µM). Under salinity stress conditions, only P. wrightii leaves formed stomata. Additionally, the expression of stress-responsive NCED genes, which encode a key enzyme in ABA biosynthesis, was consistently up-regulated in P. wrightii, but only temporarily in P. perfoliatus. The observed species-specific gene expression patterns may be responsible for the induction or suppression of stomatal production during exposure to salinity stress. These results suggest that the two Potamogeton species have an innate morphogenetic ability to form stomata, but the actual production of stomata depends on ABA-mediated stress responses specific to each species and habitat.


Subject(s)
Abscisic Acid/pharmacology , Aquatic Organisms/physiology , Plant Stomata/physiology , Potamogetonaceae/physiology , Stress, Physiological/drug effects , Aquatic Organisms/drug effects , Aquatic Organisms/genetics , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Plant Stomata/drug effects , Potamogetonaceae/anatomy & histology , Potamogetonaceae/drug effects , Potamogetonaceae/genetics , Real-Time Polymerase Chain Reaction , Salinity , Stress, Physiological/genetics , Time Factors
3.
PLoS One ; 9(6): e98954, 2014.
Article in English | MEDLINE | ID: mdl-24922311

ABSTRACT

Although many people have expressed alarm that we are witnessing a mass extinction, few projections have been quantified, owing to limited availability of time-series data on threatened organisms, especially plants. To quantify the risk of extinction, we need to monitor changes in population size over time for as many species as possible. Here, we present the world's first quantitative projection of plant species loss at a national level, with stochastic simulations based on the results of population censuses of 1618 threatened plant taxa in 3574 map cells of ca. 100 km2. More than 500 lay botanists helped monitor those taxa in 1994-1995 and in 2003-2004. We projected that between 370 and 561 vascular plant taxa will go extinct in Japan during the next century if past trends of population decline continue. This extinction rate is approximately two to three times the global rate. Using time-series data, we show that existing national protected areas (PAs) covering ca. 7% of Japan will not adequately prevent population declines: even core PAs can protect at best <60% of local populations from decline. Thus, the Aichi Biodiversity Target to expand PAs to 17% of land (and inland water) areas, as committed to by many national governments, is not enough: only 29.2% of currently threatened species will become non-threatened under the assumption that probability of protection success by PAs is 0.5, which our assessment shows is realistic. In countries where volunteers can be organized to monitor threatened taxa, censuses using our method should be able to quantify how fast we are losing species and to assess how effective current conservation measures such as PAs are in preventing species extinction.


Subject(s)
Extinction, Biological , Plants/classification , Japan , Phylogeny , Phylogeography , Plants/genetics
4.
Ann Bot ; 108(7): 1299-306, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21896573

ABSTRACT

BACKGROUND AND AIMS: For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris. METHODS: Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology. KEY RESULTS: Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface. CONCLUSIONS: R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation.


Subject(s)
Lythraceae/anatomy & histology , Lythraceae/growth & development , Morphogenesis/physiology , Japan , Light , Lythraceae/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/metabolism , Water/metabolism
5.
PLoS One ; 4(2): e4633, 2009.
Article in English | MEDLINE | ID: mdl-19247501

ABSTRACT

BACKGROUND: Heterophyllous aquatic plants show marked phenotypic plasticity. They adapt to environmental changes by producing different leaf types: submerged, floating and terrestrial leaves. By contrast, homophyllous plants produce only submerged leaves and grow entirely underwater. Heterophylly and submerged homophylly evolved under selective pressure modifying the species-specific optima for photosynthesis, but little is known about the evolutionary outcome of habit. Recent evolutionary analyses suggested that rbcL, a chloroplast gene that encodes a catalytic subunit of RuBisCO, evolves under positive selection in most land plant lineages. To examine the adaptive evolutionary process linked to heterophylly or homophylly, we analyzed positive selection in the rbcL sequences of ecologically diverse aquatic plants, Japanese Potamogeton. PRINCIPAL FINDINGS: Phylogenetic and maximum likelihood analyses of codon substitution models indicated that Potamogeton rbcL has evolved under positive Darwinian selection. The positive selection has operated specifically in heterophyllous lineages but not in homophyllous ones in the branch-site models. This suggests that the selective pressure on this chloroplast gene was higher for heterophyllous lineages than for homophyllous lineages. The replacement of 12 amino acids occurred at structurally important sites in the quaternary structure of RbcL, two of which (residue 225 and 281) were identified as potentially under positive selection. CONCLUSIONS/SIGNIFICANCE: Our analysis did not show an exact relationship between the amino acid replacements and heterophylly or homophylly but revealed that lineage-specific positive selection acted on the Potamogeton rbcL. The contrasting ecological conditions between heterophyllous and homophyllous plants have imposed different selective pressures on the photosynthetic system. The increased amino acid replacement in RbcL may reflect the continuous fine-tuning of RuBisCO under varying ecological conditions.


Subject(s)
Genes, Plant , Potamogetonaceae/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Likelihood Functions , Phylogeny
6.
J Plant Res ; 120(4): 473-81, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17558544

ABSTRACT

We tested whether maternal effects have led to the adaptive divergence of strains of the natural hybrid Potamogeton anguillanus, whose putative parents show contrastingly divergent ecologies. To examine the correlation between phenotypic characters and maternal types, we conducted drought experiments and DNA typing using nuclear and chloroplast genes. In the field, we investigated the distribution of the maternal type along the depth and the inshore-offshore gradient. Hybrids of P. malaianus mothers (M-hybrids) and those of P. perfoliatus mothers (P-hybrids) could not be distinguished morphologically under submerged conditions, but differed in drought tolerance. M-hybrids and P. malaianus formed more terrestrial shoots and exhibited higher survival than P-hybrids and P. perfoliatus in drought experiments. The distribution survey clarified that M-hybrids were dominant in shallow and inshore areas, whereas they were almost absent in deeper and offshore areas. These results indicate that the natural hybrid P. anguillanus differs in adaptive values depending on the maternal type. Bidirectional hybridization and heritable maternal effects may have played important roles in its phenotypic adaptation to local environmental conditions.


Subject(s)
Adaptation, Physiological/genetics , Disasters , Potamogetonaceae/physiology , Base Sequence , DNA Primers , DNA, Plant , Hybridization, Genetic , Potamogetonaceae/genetics
7.
J Plant Res ; 120(2): 167-74, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17351831

ABSTRACT

Ranunculus nipponicus (Makino) Nakai is a vulnerable aquatic macrophyte in the Kinki district, which is the southernmost distribution of this species in Japan. The genetic diversity and structure within and among eleven extant populations were assessed using the inter-simple sequence repeats (ISSR) polymerase chain reaction in association with combinations of propagation pattern (clonal and/or seeds) and genotypic geographical structure. In total, 53 bands were amplified, of which 18 (34%) were polymorphic. Analysis of the ISSR bands identified 46 genotypes among 81 individuals from one stream population and 72 distinct genotypes among 147 individuals in the Kinki district. An unweighted pair group method with arithmetic mean (UPGMA) dendrogram showed some unity among upstream and downstream subpopulations within one stream and eleven populations. The Shannon index of genetic diversity was 0.109 for one stream population and 0.313 for total genetic diversity, suggesting relatively high genetic diversity. Analysis of molecular variance (AMOVA) revealed that 84.1% of the total genetic diversity occurred among populations and the remaining diversity (15.9%) occurred within populations. Significant genetic differentiation occurred among populations in the Kinki district. These results suggest that conservation of each population is important for maintaining genetic diversity of R. nipponicus in this district.


Subject(s)
Ranunculus/classification , Ranunculus/genetics , DNA, Plant/analysis , DNA, Plant/genetics , Genetic Markers , Genetic Variation/genetics , Geography , Japan , Phylogeny , Repetitive Sequences, Nucleic Acid/genetics , Sampling Studies
8.
J Plant Res ; 115(1117): 11-6, 2002 Feb.
Article in English | MEDLINE | ID: mdl-12884043

ABSTRACT

We analyzed the genetic variation in Potamogeton anguillanus Koidz. and its putative parents, P. malaianus Miq. and P. perfoliatus L., at five allozyme loci of four enzymes to test the hypothesis of a hybrid origin for P. anguillanus, collected in Lake Biwa, Japan. Alleles diagnostic for either P. malaianus or P. perfoliatus were present at four loci. Of 13 single locus phenotypes (SLPs) of P. anguillanus, eight were phenotypes that were expected in F(1) hybrids between P. malaianus and P. perfoliatus. Two SLPs were different from those expected in F(1) hybrids but could have resulted from segregation of parental alleles in later generation hybrids. Each of the remaining three SLPs possessed one allele unique to P. anguillanus. Allozyme analyses thus supported the view that P. anguillanus was derived from hybridization between P. malaianus and P. perfoliatus. It seems likely that the genetic diversity of P. anguillanus found previously originated through multiple hybridizations and sexual processes in P. anguillanus. Other processes such as intragenic recombination, mutation, or hybridization with another lineage are also discussed with reference to the origin of unique alleles.

SELECTION OF CITATIONS
SEARCH DETAIL
...