Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
J Cell Biochem ; 124(10): 1486-1502, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37566644

ABSTRACT

Skeletal muscle is composed of multinucleated myotubes formed by the fusion of mononucleated myoblasts. Skeletal muscle differentiation, termed as myogenesis, have been investigated using the mouse skeletal myoblast cell line C2C12. It has been reported that several "small" Rab proteins, major membrane-trafficking regulators, possibly regulate membrane protein transport in C2C12 cells; however, the role of Rab proteins in myogenesis remains unexplored. Rab44, a member of "large" Rab GTPases, has recently been identified as a negative regulator of osteoclast differentiation. In this study, using C2C12 cells, we found that Rab44 expression was upregulated during myoblast differentiation into myotubes. Knockdown of Rab44 enhanced myoblast differentiation and myotube formation. Consistent with these results, Rab44 knockdown in myoblasts increased expression levels of several myogenic marker genes. Rab44 knockdown increased the surface accumulation of myomaker and myomixer, two fusogenic proteins required for multinucleation, implying enhanced cell fusion. Conversely, Rab44 overexpression inhibited myoblast differentiation and tube formation, accompanied by decreased expression of some myogenic markers. Furthermore, Rab44 was found to be predominantly localized in lysosomes, and Rab44 overexpression altered the number and size of lysosomes. Considering the underlying molecular mechanism, Rab44 overexpression impaired the signaling pathway of the mechanistic target of rapamycin complex1 (mTORC1) in C2C12 cells. Namely, phosphorylation levels of mTORC1 and downstream mTORC1 substrates, such as S6 and P70-S6K, were notably lower in Rab44 overexpressing cells than those in control cells. These results indicate that Rab44 negatively regulates myoblast differentiation into myotubes by controlling fusogenic protein transport and mTORC1 signaling.

2.
J Cell Physiol ; 238(10): 2253-2266, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37565627

ABSTRACT

The skeletal muscle is a tissue that shows remarkable plasticity to adapt to various stimuli. The development and regeneration of skeletal muscles are regulated by numerous molecules. Among these, we focused on Rab44, a large Rab GTPase, that has been recently identified in immune cells and osteoclasts. Recently, bioinformatics data has revealed that Rab44 is upregulated during the myogenic differentiation of myoblasts into myotubes in C2C12 cells. Thus, Rab44 may be involved in myogenesis. Here, we have investigated the effects of Rab44 deficiency on the development and regeneration of skeletal muscle in Rab44 knockout (KO) mice. Although KO mice exhibited body and muscle weights similar to those of wild-type (WT) mice, the histochemical analysis showed that the myofiber cross-sectional area (CSA) of KO mice was significantly smaller than that of WT mice. Importantly, the results of muscle regeneration experiments using cardiotoxin revealed that the CSA of KO mice was significantly larger than that of WT mice, suggesting that Rab44 deficiency promotes muscle regeneration. Consistent with the in vivo results, in vitro experiments indicated that satellite cells derived from KO mice displayed enhanced proliferation and differentiation. Mechanistically, KO satellite cells exhibited an increased mechanistic target of rapamycin complex 1 (mTORC1) signaling compared to WT cells. Additionally, enhanced cell surface transport of myomaker and myomixer, which are essential membrane proteins for myoblast fusion, was observed in KO satellite cells compared to WT cells. Therefore, Rab44 deficiency enhances muscle regeneration by modulating the mTORC1 signaling pathway and transport of fusogenic regulators.

3.
Front Cell Infect Microbiol ; 13: 1095919, 2023.
Article in English | MEDLINE | ID: mdl-36844397

ABSTRACT

Bacteria of the family Flavobacteriaceae (flavobacteria) primarily comprise nonpathogenic bacteria that inhabit soil and water (both marine and freshwater). However, some bacterial species in the family, including Flavobacterium psychrophilum and Flavobacterium columnare, are known to be pathogenic to fish. Flavobacteria, including the abovementioned pathogenic bacteria, belong to the phylum Bacteroidota and possess two phylum-specific features, gliding motility and a protein secretion system, which are energized by a common motor complex. Herein, we focused on Flavobacterium collinsii (GiFuPREF103) isolated from a diseased fish (Plecoglossus altivelis). Genomic analysis of F. collinsii GiFuPREF103 revealed the presence of a type IX secretion system and additional genes associated with gliding motility and spreading. Using transposon mutagenesis, we isolated two mutants with altered colony morphology and colony spreading ability; these mutants had transposon insertions in pep25 and lbp26. The glycosylation material profiles revealed that these mutants lacked the high-molecular-weight glycosylated materials present in the wild-type strain. In addition, the wild-type strains exhibited fast cell population movement at the edge of the spreading colony, whereas reduced cell population behavior was observed in the pep25- and lbp26-mutant strains. In the aqueous environment, the surface layers of these mutant strains were more hydrophobic, and they formed biofilms with enhanced microcolony growth compared to those with the wild-type. In Flavobacterium johnsoniae, the Fjoh_0352 and Fjoh_0353 mutant strains were generated, which were based on the ortholog genes of pep25 and lbp26. In these F. johnsoniae mutants, as in F. collinsii GiFuPREF103, colonies with diminished spreading capacity were formed. Furthermore, cell population migration was observed at the edge of the colony in wild-type F. johnsoniae, whereas individual cells, and not cell populations, migrated in these mutant strains. The findings of the present study indicate that pep25 and lbp26 contribute to the colony spreading of F. collinsii.


Subject(s)
Fish Diseases , Osmeriformes , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Osmeriformes/genetics , Osmeriformes/metabolism , Flavobacterium/genetics , Mutagenesis , Bacteroidetes , Fish Diseases/microbiology
4.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36674510

ABSTRACT

Rab44 was recently identified as an atypical Rab GTPase that possesses EF-hand and coiled-coil domains at the N-terminus, and a Rab-GTPase domain at the C-terminus. Rab44 is highly expressed in immune-related cells such as mast cells, macrophages, osteoclasts, and granulocyte-lineage cells in the bone marrow. Therefore, it is speculated that Rab44 is involved in the inflammation and differentiation of immune cells. However, little is known about the role of Rab44 in inflammation. In this study, we showed that Rab44 was upregulated during the early phase of differentiation of M1- and M2-type macrophages. Rab44-deficient mice exhibited impaired tumor necrosis factor alpha and interleukin-10 production after lipopolysaccharide (LPS) stimulation. The number of granulocytes in Rab44-deficient mice was lower, but the lymphocyte count in Rab44-deficient mice was significantly higher than that in wild-type mice after LPS stimulation. Moreover, Rab44-deficient macrophages showed impaired nickel-induced toxicity, and Rab44-deficient mice showed impaired nickel-induced hypersensitivity. Upon nickel hypersensitivity induction, Rab44-deficient mice showed different frequencies of immune cells in the blood and ears. Thus, it is likely that Rab44 is implicated in immune cell differentiation and inflammation, and Rab44 deficiency induces impaired immune responses to nickel allergies.


Subject(s)
Hypersensitivity , Nickel , Mice , Animals , Nickel/toxicity , Lipopolysaccharides/toxicity , Hypersensitivity/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Inflammation , Immunity
5.
Cell Biochem Funct ; 40(8): 838-855, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36111708

ABSTRACT

Rab11a, which ubiquitously localizes to early and recycling endosomes, is required for regulating the vesicular transport of cellular cargos. Interestingly, our previous study revealed that Rab11a served as a negative regulator of osteoclastogenesis by facilitating the lysosomal proteolysis of (1) colony-stimulating factor-1 (c-fms) receptor and (2) receptor activator of nuclear factor-κB (RANK) receptor, thereby resulting in inhibition of osteoclast (OC) differentiation, maturation, and bone-resorbing activity. However, the molecular mechanisms of how Rab11a negatively affected osteoclastogenesis were largely unknown. Heat shock protein (HSP90), including two isoforms HSP90α and HSP90ß, necessitates the stability, maturation, and activity of a broad range of its clients, and is essentially required for a vast array of signal transduction pathways in nonstressful conditions. Furthermore, cumulative evidence suggests that HSP90 is a vital element of the vesicular transport network. Indeed, our recent study revealed that HSP90, a novel effector protein of Rab11b, modulated Rab11b-mediated osteoclastogenesis. In this study, we also found that Rab11a interacted with both HSP90α and HSP90ß in OCs. Upon blockade of HSP90 ATPase activity by a specific inhibitor(17-allylamino-demethoxygeldanamycin), we showed that (1) the ATPase domain of HSP90 was a prerequisite for the interaction between HSP90 and Rab11a, and (2) the interaction of HSP90 to Rab11a sufficiently maintained the inhibitory effects of Rab11a on osteoclastogenesis. Altogether, our findings undoubtedly indicate a novel role of HSP90 in regulating Rab11a-mediated osteoclastogenesis.


Subject(s)
HSP90 Heat-Shock Proteins , Osteoclasts , rab GTP-Binding Proteins , Humans , Adenosine Triphosphatases/metabolism , Cell Differentiation , Endosomes , HSP90 Heat-Shock Proteins/metabolism , Osteoclasts/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Osteogenesis , rab GTP-Binding Proteins/metabolism
6.
Int J Mol Sci ; 23(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35743062

ABSTRACT

Osteoclasts are multinucleated bone-resorbing cells that are formed by the fusion of macrophages. Recently, we identified Rab44, a large Rab GTPase, as an upregulated gene during osteoclast differentiation that negatively regulates osteoclast differentiation. However, the molecular mechanisms by which Rab44 negatively regulates osteoclast differentiation remain unknown. Here, we found that the GDP form of Rab44 interacted with the actin-binding protein, Coronin1C, in murine macrophages. Immunoprecipitation experiments revealed that the interaction of Rab44 and Coronin1C occurred in wild-type and a dominant-negative (DN) mutant of Rab44, but not in a constitutively active (CA) mutant of Rab44. Consistent with these findings, the expression of the CA mutant inhibited osteoclast differentiation, whereas that of the DN mutant enhanced this differentiation. Using a phase-contrast microscope, Coronin1C-knockdown osteoclasts apparently impaired multinuclear formation. Moreover, Coronin1C knockdown impaired the migration and chemotaxis of RAW-D macrophages. An in vivo experimental system demonstrated that Coronin1C knockdown suppresses osteoclastogenesis. Therefore, the decreased cell formation and fusion of Coronin1C-depleted osteoclasts might be due to the decreased migration of Coronin1C-knockdown macrophages. These results indicate that Coronin1C is a GDP-specific Rab44 effector that controls osteoclast formation by regulating cell motility in macrophages.


Subject(s)
Bone Resorption , Osteoclasts , rab GTP-Binding Proteins/metabolism , Animals , Bone Resorption/metabolism , Cell Differentiation/genetics , Cell Movement , Macrophages/metabolism , Mice , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Osteoclasts/metabolism , Osteogenesis/genetics , RANK Ligand/metabolism
7.
Cell Biochem Funct ; 40(3): 263-277, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35285960

ABSTRACT

Accumulating evidence suggests that Rab GTPases representing the largest branch of Ras superfamily have recently emerged as the core factors for the regulation of osteoclastogenesis through modulating vesicular transport amongst specific subcellular compartments. Among these, Rab34 GTPase has been identified to be important for the post-Golgi secretory pathway and for phagocytosis; nevertheless, its specific role in osteoclastogenesis has been completely obscure. Here, upon the in vitro model of osteoclast formation derived from murine macrophages like RAW-D cells or bone marrow-derived macrophages, we reveal that Rab34 regulates osteoclastogenesis bidirectionally. More specifically, Rab34 serves as a negative regulator of osteoclast differentiation by promoting the lysosome-induced proteolysis of two osteoclastogenic surface receptors, c-fms and RANK, via the axis of early endosomes-late endosomes-lysosomes, leading to alleviate the transcriptional activity of two of the master regulator of osteoclast differentiation, c-fos and NFATc-1, eventually attenuating osteoclast differentiation and bone resorption. Besides, Rab34 plays a crucial role in modulating the secretory network of lysosome-related proteases including matrix metalloprotease 9 and Cathepsin K across the ruffled borders of osteoclasts, contributing to the regulation of bone resorption.


Subject(s)
Bone Resorption , Osteogenesis , Animals , Bone Resorption/metabolism , Cell Differentiation , Mice , NFATC Transcription Factors/metabolism , Osteoclasts/metabolism , RANK Ligand/metabolism , rab GTP-Binding Proteins/metabolism
8.
Neurochem Int ; 154: 105282, 2022 03.
Article in English | MEDLINE | ID: mdl-35032577

ABSTRACT

Despite a clear correlation between the infiltration of periodontal pathogens in the brain and cognitive decline in Alzheimer's disease (AD), the precise mechanism underlying bacteria crossing the blood-brain barrier (BBB) remains unclear. The periodontal pathogen Porphyromonas gingivalis produces a unique class of cysteine proteases termed gingipains. Gingipains appear to be key virulence factors that exacerbate sporadic AD. We herein report that gingipains are involved in increasing permeability of hCMEC/D3 cell monolayer, human cerebral microvascular endothelial cell lines, through degradation of tight junction proteins including Zonula occludens-1 (ZO-1) and occludin. There was a significant decrease in the mean protein levels of ZO-1 and occludin after infection of hCMEC/D3 cells with wild-type (WT) P. gingivalis. However, infection of these cells with a gingipain-deficient P. gingivalis strain showed significantly lower reduction of the mean protein levels of either ZO-1 and occludin, compared to the WT strain. Similar results were obtained after treatment with culture supernatant from WT and gingipain-deficient P. gingivalis strains. In vitro digestion of human recombinant ZO-1 and occludin by WT P. gingivalis culture supernatant in the absence or presence of gingipain inhibitors indicated that gingipains directly degraded these tight junction proteins. A close immunohistochemical examination using anti-gingipain antibody further revealed that gingipains localized in the cytosol and nuclei of hCMEC/D3 cells after infection with WT P. gingivalis and treatment with its culture supernatant. Furthermore, intracellular localization of outer membrane vesicles (OMVs) bound gingipains from WT P. gingivalis and OMV-induced degradation of ZO-1 and occludin were also observed in hCMEC/D3 cells. Thus, the delivery of gingipains into the cerebral microvascular endothelial cells, probably through OMV, may be responsible for the BBB damage through intracellular degradation of ZO-1 and occludin.


Subject(s)
Porphyromonas gingivalis , Tight Junction Proteins , Adhesins, Bacterial/metabolism , Endothelial Cells/metabolism , Gingipain Cysteine Endopeptidases , Humans , Permeability , Porphyromonas gingivalis/metabolism
9.
J Alzheimers Dis ; 83(2): 665-681, 2021.
Article in English | MEDLINE | ID: mdl-34334391

ABSTRACT

BACKGROUND: Studies have reported that synaptic failure occurs before the Alzheimer's disease (AD) onset. The systemic Porphyromonas gingivalis (P. gingivalis) infection is involved in memory decline. We previously showed that leptomeningeal cells, covering the brain, activate glial cells by releasing IL-1ß in response to systemic inflammation. OBJECTIVE: In the present study, we focused on the impact of leptomeningeal cells on neurons during systemic P. gingivalis infection. METHODS: The responses of leptomeningeal cells and cortical neurons to systemic P. gingivalis infection were examined in 15-month-old mice. The mechanism of IL-1ß production by P. gingivalis infected leptomeningeal cells was examined, and primary cortical neurons were treated with P. gingivalis infected leptomeningeal cells condition medium (Pg LCM). RESULTS: Systemic P. gingivalis infection increased the expression of IL-1ß in leptomeninges and reduced the synaptophysin (SYP) expression in leptomeninges proximity cortex in mice. Leptomeningeal cells phagocytosed P. gingivalis resulting in lysosomal rupture and cathepsin B (CatB) leakage. Leaked CatB mediated NLRP3 inflammasome activation inducing IL-1ß secretion in leptomeningeal cells. Pg LCM decreased the expression of synaptic molecules, including SYP, which was inhibited by an IL-1 receptor antagonist pre-treatment. CONCLUSION: These observations demonstrate that P. gingivalis infection is involved in synaptic failure by inducing CatB/NLRP3 inflammasome-mediated IL-1ß production in leptomeningeal cells. The periodontal bacteria-induced synaptic damage may accelerate the onset and cognitive decline of AD.


Subject(s)
Bacteroidaceae Infections/metabolism , Meninges , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Porphyromonas gingivalis/metabolism , Animals , Cathepsin B/metabolism , Female , Humans , Inflammation/metabolism , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism
10.
Int J Mol Sci ; 22(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34299309

ABSTRACT

Rab GTPases are major coordinators of intracellular membrane trafficking, including vesicle transport, membrane fission, tethering, docking, and fusion events. Rab GTPases are roughly divided into two groups: conventional "small" Rab GTPases and atypical "large" Rab GTPases that have been recently reported. Some members of large Rab GTPases in mammals include Rab44, Rab45/RASEF, and Rab46. The genes of these large Rab GTPases commonly encode an amino-terminal EF-hand domain, coiled-coil domain, and the carboxyl-terminal Rab GTPase domain. A common feature of large Rab GTPases is that they express several isoforms in cells. For instance, Rab44's two isoforms have similar functions, but exhibit differential localization. The long form of Rab45 (Rab45-L) is abundantly distributed in epithelial cells. The short form of Rab45 (Rab45-S) is predominantly present in the testes. Both Rab46 (CRACR2A-L) and the short isoform lacking the Rab domain (CRACR2A-S) are expressed in T cells, whereas Rab46 is only distributed in endothelial cells. Although evidence regarding the function of large Rab GTPases has been accumulating recently, there are only a limited number of studies. Here, we report the recent findings on the large Rab GTPase family concerning their function in membrane trafficking, cell differentiation, related diseases, and knockout mouse phenotypes.


Subject(s)
rab GTP-Binding Proteins/chemistry , rab GTP-Binding Proteins/metabolism , Amino Acid Sequence , Animals , Calcium/metabolism , Female , Gene Knockout Techniques , Humans , Intracellular Membranes/metabolism , Male , Mast Cells/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Osteoclasts/cytology , Osteoclasts/metabolism , Phenotype , Protein Domains , T-Lymphocytes/metabolism , rab GTP-Binding Proteins/genetics
11.
Biochim Biophys Acta Mol Cell Res ; 1868(10): 119096, 2021 09.
Article in English | MEDLINE | ID: mdl-34242681

ABSTRACT

Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that plays a pivotal role in folding, activating and assembling a variety of client proteins. In addition, HSP90 has recently emerged as a crucial regulator of vesicular transport of cellular proteins. In our previous study, we revealed Rab11b negatively regulated osteoclastogenesis by promoting the lysosomal proteolysis of c-fms and RANK surface receptors via the axis of early endosome-late endosome-lysosomes. In this study, using an in vitro model of osteoclasts differentiated from murine macrophage-like RAW-D cells, we revealed that Rab11b interacted with both HSP90 isoforms, HSP90 alpha (HSP90α) and HSP90 beta (HSP90ß), suggesting that Rab11b is an HSP90 client. Using at specific blocker for HSP90 ATPase activity, 17-allylamino-demethoxygeldanamycin (17-AAG), we found that the HSP90 ATPase domain is indispensable for maintaining the interaction between HSP90 and Rab11b in osteoclasts. Nonetheless, its ATPase activity is not required for regulating the turnover of endogenous Rab11b. Interestingly, blocking the interaction between HSP90 and Rab11b by either HSP90-targeting small interfering RNA (siHSP90) or 17-AAG abrogated the inhibitory effects of Rab11b on osteoclastogenesis by suppressing the Rab11b-mediated transport of c-fms and RANK surface receptors to lysosomes via the axis of early endosome-late endosome-lysosomes, alleviating the Rab11b-mediated proteolysis of these surface receptors in osteoclasts. Based on our observations, we propose a HSP90/Rab11b-mediated regulatory mechanism for osteoclastogenesis by directly modulating the c-fms and RANK surface receptors in osteoclasts, thereby contributing to the maintenance of bone homeostasis.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Cells, Cultured , Mice , Osteogenesis
12.
FEBS Open Bio ; 11(4): 1165-1185, 2021 04.
Article in English | MEDLINE | ID: mdl-33641252

ABSTRACT

Rab44 is a large Rab GTPase containing a Rab GTPase domain and some additional N-terminal domains. We recently used Rab44-deficient mice to demonstrate that Rab44 regulates granule exocytosis in mast cells and IgE-mediated anaphylaxis. In mouse mast cells, Rab44 is expressed as two isoforms, namely, the long and short forms; however, the characteristics of these two isoforms remain unknown. Here, we investigated secretion and localization of the human long Rab44 isoform and the two mouse isoforms and their mutants expressed in rat basophilic leukemia (RBL)-2H3 cells. Expression of the human long isoform and both mouse isoforms caused an increase in ß-hexosaminidase secretion. Confocal and quantitative analyses showed that both human and mouse long isoforms localized mainly to lysosomes while the mouse short isoform localized mainly to the ER. Live imaging with LysoTracker indicated that the size and number of LysoTracker-positive vesicles were altered by the various mutants. Ionomycin treatment partially altered localization of both long isoforms to the plasma membrane and cytosol, whereas it had little effect on colocalization of the short isoform with lysosomes. Mechanistically, both human and mouse Rab44 proteins interacted with vesicle-associated membrane protein 8 (VAMP8), a v-SNARE protein. Therefore, Rab44 isoforms similarly promote lysosomal exocytosis, but exhibit differential localization in mast cells.


Subject(s)
Exocytosis , Lysosomes/metabolism , Mast Cells/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Endoplasmic Reticulum/metabolism , Humans , Mice , Mice, Knockout , Protein Transport , Receptors, IgE/metabolism , SNARE Proteins/metabolism , beta-N-Acetylhexosaminidases/biosynthesis , rab GTP-Binding Proteins/genetics
13.
J Neurochem ; 158(3): 724-736, 2021 08.
Article in English | MEDLINE | ID: mdl-32441775

ABSTRACT

Cerebrovascular-related amyloidogenesis is found in over 80% of Alzheimer's disease (AD) cases, and amyloid ß (Aß) generation is increased in the peripheral macrophages during infection of Porphyromonas gingivalis (P. gingivalis), a causal bacterium for periodontitis. In this study, we focused on receptor for advanced glycation end products (RAGE), the key molecule involves in Aß influx after P. gingivalis infection to test our hypothesis that Aß transportation from periphery into the brain, known as "Aß influx," is enhanced by P. gingivalis infection. Using cultured hCMEC/D3 cell line, in comparison to uninfected cells, directly infection with P. gingivalis (multiplicity of infection, MOI = 5) significantly increased a time-dependent RAGE expression resulting in a dramatic increase in Aß influx in the hCMEC/D3 cells; the P. gingivalis-up-regulated RAGE expression was significantly decreased by NF-κB and Cathepsin B (CatB)-specific inhibitors, and the P.gingivalis-increased IκBα degradation was significantly decreased by CatB-specific inhibitor. Furthermore, the P. gingivalis-increased Aß influx was significantly reduced by RAGE-specific inhibitor. Using 15-month-old mice (C57BL/6JJmsSlc, female), in comparison to non-infection mice, systemic P. gingivalis infection for three consecutive weeks (1 × 108  CFU/mouse, every 3 days, intraperitoneally) significantly increased the RAGE expression in the CD31-positive endothelial cells and the Aß loads around the CD31-positive cells in the mice's brains. The RAGE expression in the CD31-positive cells was positively correlated with the Aß loads. These observations demonstrate that the up-regulated RAGE expression in cerebral endothelial cells mediates the Aß influx after P. gingivalis infection, and CatB plays a critical role in regulating the NF-κB/RAGE expression. Cover Image for this issue: https://doi.org/10.1111/jnc.15073.


Subject(s)
Amyloid beta-Peptides/metabolism , Bacteroidaceae Infections/metabolism , Cerebral Cortex/metabolism , Endothelial Cells/metabolism , Peptide Fragments/metabolism , Porphyromonas gingivalis , Receptor for Advanced Glycation End Products/biosynthesis , Animals , Cerebral Cortex/microbiology , Cerebrovascular Circulation/physiology , Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/microbiology , Endothelial Cells/microbiology , Female , Mice , Mice, Inbred C57BL , Up-Regulation/physiology
14.
Methods Mol Biol ; 2210: 97-112, 2021.
Article in English | MEDLINE | ID: mdl-32815131

ABSTRACT

Porphyromonas gingivalis is a gram-negative, rod-shaped, nonmotile bacterium belonging to the phylum Bacteroidetes. It produces abundant amounts of proteases in both cell-associated and secretory forms, including a group of cysteine proteases referred to as gingipains, which have attracted much attention due to their high proteolytic activity associated with pathogenicity. Gingipains are grouped into arginine (R)-specific (RgpA and RgpB) and lysine (K)-specific (Kgp) types. Both Rgp (collective term for RgpA and RgpB) and Kgp gingipains play crucial roles in the virulence of P. gingivalis, including the degradation of host periodontal tissues, disruption of host defense mechanisms, and loss of viability in host cells, such as fibroblasts and endothelial cells. In addition to their function in virulence, gingipains are also essential for the growth and survival of P. gingivalis in periodontal pockets through the acquisition of amino acids and heme groups. Furthermore, Rgp and Kgp gingipains are critical in processing fimbriae and several bacterial proteins that contribute to hemagglutination, coaggregation, and hemoglobin binding. This chapter describes the methods used to analyze gingipains.


Subject(s)
Bacterial Proteins/metabolism , Gingipain Cysteine Endopeptidases/metabolism , Porphyromonas gingivalis/metabolism , Animals , Arginine/metabolism , Cysteine Endopeptidases/metabolism , Endothelial Cells/metabolism , Female , Fibroblasts/metabolism , Fimbriae, Bacterial/metabolism , Guinea Pigs , Hemagglutination/physiology , Hemagglutinins/metabolism , Lysine/metabolism , Virulence/physiology
15.
Int J Mol Sci ; 21(24)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302495

ABSTRACT

Rab11b, abundantly enriched in endocytic recycling compartments, is required for the establishment of the machinery of vesicle trafficking. Yet, no report has so far characterized the biological function of Rab11b in osteoclastogenesis. Using in vitro model of osteoclasts differentiated from murine macrophages like RAW-D cells or bone marrow-derived macrophages, we elucidated that Rab11b served as an inhibitory regulator of osteoclast differentiation sequentially via (i) abolishing surface abundance of RANK and c-Fms receptors; and (ii) attenuating nuclear factor of activated T-cells c1 (NFATc-1) upstream signaling cascades, following RANKL stimulation. Rab11b was localized in early and late endosomes, Golgi complex, and endoplasmic reticulum; moreover, its overexpression enlarged early and late endosomes. Upon inhibition of lysosomal function by a specific blocker, chloroquine (CLQ), we comprehensively clarified a novel function of lysosomes on mediating proteolytic degradation of c-Fms and RANK surface receptors, drastically ameliorated by Rab11b overexpression in RAW-D cell-derived osteoclasts. These findings highlight the key role of Rab11b as an inhibitor of osteoclastogenesis by directing the transport of c-Fms and RANK surface receptors to lysosomes for degradation via the axis of early endosomes-late endosomes-lysosomes, thereby contributing towards the systemic equilibrium of the bone resorption phase.


Subject(s)
Osteoclasts/metabolism , Osteogenesis , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptor, Macrophage Colony-Stimulating Factor/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Cell Differentiation , Cell Line , Cells, Cultured , Lysosomes/metabolism , Male , Mice , Mice, Inbred C57BL , NFATC Transcription Factors/metabolism , Osteoclasts/cytology , Proteolysis , rab GTP-Binding Proteins/genetics
16.
Cells ; 9(11)2020 10 31.
Article in English | MEDLINE | ID: mdl-33142674

ABSTRACT

Osteoclast differentiation and activity are controlled by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and the receptor activator of nuclear factor-κB ligand (RANKL). Rab11A GTPase, belonging to Rab11 subfamily representing the largest branch of Ras superfamily of small GTPases, has been identified as one of the crucial regulators of cell surface receptor recycling. Nevertheless, the regulatory role of Rab11A in osteoclast differentiation has been completely unknown. In this study, we found that Rab11A was strongly upregulated at a late stage of osteoclast differentiation derived from bone marrow-derived macrophages (BMMs) or RAW-D murine osteoclast precursor cells. Rab11A silencing promoted osteoclast formation and significantly increased the surface levels of c-fms and receptor activator of nuclear factor-κB (RANK) while its overexpression attenuated osteoclast formation and the surface levels of c-fms and RANK. Using immunocytochemical staining for tracking Rab11A vesicular localization, we observed that Rab11A was localized in early and late endosomes, but not lysosomes. Intriguingly, Rab11A overexpression caused the enhancement of fluorescent intensity and size-based enlargement of early endosomes. Besides, Rab11A overexpression promoted lysosomal activity via elevating the endogenous levels of a specific lysosomal protein, LAMP1, and two key lysosomal enzymes, cathepsins B and D in osteoclasts. More importantly, inhibition of the lysosomal activity by chloroquine, we found that the endogenous levels of c-fms and RANK proteins were enhanced in osteoclasts. From these observations, we suggest a novel function of Rab11A as a negative regulator of osteoclastogenesis mainly through (i) abolishing the surface abundance of c-fms and RANK receptors, and (ii) upregulating lysosomal activity, subsequently augmenting the degradation of c-fms and RANK receptors, probably via the axis of early endosomes-late endosomes-lysosomes in osteoclasts.


Subject(s)
Macrophage Colony-Stimulating Factor/metabolism , Osteogenesis/genetics , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptor, Macrophage Colony-Stimulating Factor/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Animals , Cell Differentiation , Cell Line , Endosomes/metabolism , Gene Expression Regulation , Gene Silencing , HEK293 Cells , Humans , Lysosomes/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Osteoclasts/metabolism , Proteolysis , RANK Ligand/metabolism
17.
Sci Rep ; 10(1): 19149, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33154405

ABSTRACT

Rab44 is a large Rab GTPase that contains an amino-terminal EF-hand domain, a coiled-coil domain, and a carboxyl-terminal Rab GTPase domain. However, the roles of the EF-hand and coiled-coil domains remain unclear. Here, we constructed various deletion and point mutants of human Rab44. When overexpressed in HeLa cells, the wild-type Rab44 (hWT) formed ring-like structures, and partially localised to lysosomes. The dominant negative mutant, hT847N, localised to lysosomes and the cytosol, while the constitutively active mutant, hQ892L, formed ring-like structures, and partially localised to the plasma membrane and nuclei. The hΔEF, hΔcoil, and h826-1021 mutants also formed ring-like structures; however, their localisation patterns differed from hWT. Analysis of live imaging with LysoTracker revealed that the size of LysoTracker-positive vesicles was altered by all other mutations than the hC1019A and hΔEF. Treatment with ionomycin, a Ca2+ ionophore, induced the translocation of hWT and hΔcoil into the plasma membrane and cytosol, but had no effect on the localisation of the hΔEF and h826-1021 mutants. Thus, the EF- hand domain is likely required for the partial translocation of Rab44 to the plasma membrane and cytosol following transient Ca2+ influx, and the coiled-coil domain appears to be important for localisation and organelle formation.


Subject(s)
Cell Membrane/metabolism , Cell Nucleus/metabolism , EF Hand Motifs/physiology , rab GTP-Binding Proteins/metabolism , HeLa Cells , Humans , Organelle Shape/physiology , Protein Domains
18.
Sci Rep ; 10(1): 10728, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32612275

ABSTRACT

Rab44 is a large Rab GTPase that contains a Rab-GTPase domain and some additional domains, such as EF-hand and coiled-coil domains at the N-terminus. Our previous study showed that Rab44 negatively regulates osteoclast differentiation by modulating intracellular calcium levels; however, aside from those findings, there is little information concerning Rab44 on other cells or tissues. In this study, we showed that Rab44 was highly expressed in bone marrow cells among various mouse tissues. Immunohistochemical studies indicated that Rab44 was detectable by only a small number of cells in the immune-related tissues and that Rab44 was partially detected in CD117-positive cells, but not in Stem cell antigen 1-positive cells in the bone marrow. Rab44 expression levels were decreased during differentiation of immune-related cells, such as neutrophils, macrophages, and dendritic cells compared with bone marrow cells. Although endogenous Rab44 in macrophages was localised in lysosomes, lipopolysaccharide (LPS) stimulation led to partial translocation to early endosomes and the plasma membrane. Moreover, Rab44 expression levels were altered by treatment with various immunomodulators, including LPS. These results indicate that Rab44 expression and localisation in bone marrow cells and macrophages alters with cell differentiation and stimulation.


Subject(s)
Bone Marrow Cells/metabolism , Cell Differentiation , Dendritic Cells/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Neutrophils/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/drug effects , Macrophages/cytology , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Neutrophils/cytology , Neutrophils/drug effects , Signal Transduction
20.
J Alzheimers Dis ; 72(2): 479-494, 2019.
Article in English | MEDLINE | ID: mdl-31594220

ABSTRACT

Abnormal accumulation of amyloid-ß (Aß) in the brain is the most significant pathological hallmark of Alzheimer's disease (AD). We have found that chronic systemic exposure to lipopolysaccharide of Porphyromonas gingivalis (P. gingivalis) induces the accumulation of Aß in the brain of middle-aged mice. On the other hand, recent research has shown that circulating Aß is transferred into the brain; however, the involvement of chronic systemic P. gingivalis infection in the peripheral Aß metabolism is unknown. We hypothesized that chronic P. gingivalis infection expands Aß pools in peripheral inflammatory tissues and thereby contributes to the accumulation of Aß in the brain of patients with periodontitis. We showed that the increased expression of IL-1ß, AßPP770, CatB, Aß1-42, and Aß3-42 was mainly co-localized with macrophages in the liver of P. gingivalis infected mice. Blocking CatB and NF-κB significantly inhibited the P. gingivalis-induced expression of IL-1ß, AßPP770, Aß1-42, and Aß3-42 in RAW264.7 cells. Aß3-42, but not Aß1-42, induced the significant death of macrophages, and the reduction of phagocytic abilities induced by Aß3-42 tended to be higher than that induced by Aß1-42. Additionally, the expression of AßPP770, CatB, Aß1-42, and Aß3-42 was determined in the macrophages of gingival tissues from periodontitis patients. These findings indicate that chronic systemic P. gingivalis infection induces the Aß accumulation in inflammatory monocytes/macrophages via the activation of CatB/NF-κB signaling, thus suggesting monocytes/macrophages serve as a circulating pool of Aß in patients with periodontitis. Taken together, CatB may be a novel therapeutic target for preventing the periodontitis-related AD initiation and pathological progression.


Subject(s)
Amyloid beta-Peptides/metabolism , Bacteroidaceae Infections/metabolism , Macrophages/metabolism , Monocytes/metabolism , Porphyromonas gingivalis , Animals , Bacteroidaceae Infections/microbiology , Female , Gingiva/pathology , Inflammation/metabolism , Interleukin-1beta/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Periodontitis/metabolism , Periodontitis/microbiology , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...