Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 2523, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32054902

ABSTRACT

Frequency combs have made optical metrology accessible to hundreds of laboratories worldwide and they have set new benchmarks in multi-species trace gas sensing for environmental, industrial and medical applications. However, current comb spectrometers privilege either frequency precision and sensitivity through interposition of a cw probe laser with limited tuning range, or spectral coverage and measurement time using the comb itself as an ultra-broadband probe. We overcome this restriction by introducing a comb-locked frequency-swept optical synthesizer that allows a continuous-wave laser to be swept in seconds over spectral ranges of several terahertz while remaining phase locked to an underlying frequency comb. This offers a unique degree of versatility, as the synthesizer can be either repeatedly scanned over a single absorption line to achieve ultimate precision and sensitivity, or swept in seconds over an entire rovibrational band to capture multiple species. The spectrometer enables us to determine line center frequencies with an absolute uncertainty of 30 kHz and at the same time to collect absorption spectra over more than 3 THz with state-of-the-art sensitivity of a few 10-10 cm-1. Beyond precision broadband spectroscopy, the proposed synthesizer is an extremely promising tool to force a breakthrough in terahertz metrology and coherent laser ranging.

2.
J Biomed Opt ; 15(4): 046020, 2010.
Article in English | MEDLINE | ID: mdl-20799822

ABSTRACT

Live microscopy techniques (i.e., differential interference contrast, confocal microscopy, etc.) have enabled the understanding of the mechanisms involved in cells and tissue formation. In long-term studies, special care must be taken in order to avoid sample damage, restricting the applicability of the different microscopy techniques. We demonstrate the potential of using third-harmonic generation (THG) microscopy for morphogenesis/embryogenesis studies in living Caenorhabditis elegans (C. elegans). Moreover, we show that the THG signal is obtained in all the embryo development stages, showing different tissue/structure information. For this research, we employ a 1550-nm femtosecond fiber laser and demonstrate that the expected water absorption at this wavelength does not severely compromise sample viability. Additionally, this has the important advantage that the THG signal is emitted at visible wavelengths (516 nm). Therefore, standard collection optics and detectors operating near maximum efficiency enable an optimal signal reconstruction. All this, to the best of our knowledge, demonstrates for the first time the noninvasiveness and strong potential of this particular wavelength to be used for high-resolution four-dimensional imaging of embryogenesis using unstained C. elegans in vivo samples.


Subject(s)
Caenorhabditis elegans/anatomy & histology , Caenorhabditis elegans/embryology , Embryonic Development/physiology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Lighting/methods , Microscopy/methods , Algorithms , Animals , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...