Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 7: 42877, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28211469

ABSTRACT

Soil wettability (quantified in terms of contact angle, CA) is crucial for physical, chemical, and biological soil functioning. As the CA is determined by components present within the outmost nanometer of particles, this study applied X-ray photoelectron spectroscopy (XPS) with a maximum analysis depth of 10 nm to test the relationship between CA and surface elemental composition, using soil samples from a chronosequence where CA increased from 0° (0 yrs) to about 98° (120 yrs). Concurrently, as seen by XPS, C and N content increased and the content of O and the mineral-derived cations (Si, Al, K, Na, Ca, Mg, Fe) decreased. The C content was positively correlated with CA and least squares fitting indicated increasing amounts of non-polar C species with soil age. The contents of O and the mineral-derived cations were negatively correlated with CA, suggesting an increasing organic coating of the minerals that progressively masked the underlying mineral phase. The atomic O/C ratio was found to show a close negative relationship with CA, which applied as well to further sample sets of different texture and origin. This suggests the surface O/C ratio to be a general parameter linking surface wettability and surface elemental composition.

2.
Sci Total Environ ; 568: 1076-1085, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27372890

ABSTRACT

Soils are faced with man-made chemical stress factors, such as the input of organic or metal-containing pesticides, in combination with non-chemical stressors like soil compaction and natural disturbance like drought. Although multiple stress factors are typically co-occurring in soil ecosystems, research in soil sciences on this aspect is limited and focuses mostly on single structural or functional endpoints. A mechanistic understanding of the reaction of soils to multiple stressors is currently lacking. Based on a review of resilience theory, we introduce a new concept for research on the ability of polluted soil (xenobiotics or other chemical pollutants as one stressor) to resist further natural or anthropogenic stress and to retain its functions and structure. There is strong indication that pollution as a primary stressor will change the system reaction of soil, i.e., its resilience, stability and resistance. It can be expected that pollution affects the physiological adaption of organisms and the functional redundancy of the soil to further stress. We hypothesize that the recovery of organisms and chemical-physical properties after impact of a follow-up stressor is faster in polluted soil than in non-polluted soil, i.e., polluted soil has a higher dynamical stability (dynamical stability=1/recovery time), whereas resilience of the contaminated soil is lower compared to that of not or less contaminated soil. Thus, a polluted soil might be more prone to change into another system regime after occurrence of further stress. We highlight this issue by compiling the literature exemplarily for the effects of Cu contamination and compaction on soil functions and structure. We propose to intensify research on effects of combined stresses involving a multidisciplinary team of experts and provide suggestions for corresponding experiments. Our concept offers thus a framework for system level analysis of soils paving the way to enhance ecological theory.

3.
Environ Sci Pollut Res Int ; 21(15): 9081-94, 2014.
Article in English | MEDLINE | ID: mdl-24522398

ABSTRACT

Monitored natural attenuation is widely accepted as a sustainable remediation method. However, methods providing proof of proceeding natural attenuation within the water-unsaturated (vadose) zone are still relying on proxies such as measurements of reactive and non-reactive gases, or sediment sampling and subsequent mineralisation assays, under artificial conditions in the laboratory. In particular, at field sites contaminated with hydrophobic compounds, e.g. crude oil spills, an in situ evaluation of natural attenuation is needed, because in situ methods are assumed to provide less bias than investigations applying either proxies for biodegradation or off-site microcosm experiments. In order to compare the current toolbox of methods with the recently developed in situ microcosms, incubations with direct push-sampled sediments from the vadose and the aquifer zones of a site contaminated with crude oil were carried out in conventional microcosms and in situ microcosms. The results demonstrate the applicability of the in situ microcosm approach also outside water-saturated aquifer conditions in the vadose zone. The sediment incubation experiments demonstrated turnover rates in a similar range (vadose, 4.7 mg/kg*day; aquifer, 6.4 mghexadecane/kgsoil/day) of hexadecane degradation in the vadose zone and the aquifer, although mediated by slightly different microbial communities according to the analysis of fatty acid patterns and amounts. Additional experiments had the task of evaluating the degradation potential for the branched-chain alkane pristane (2,6,10,14-tetramethylpentadecane). Although this compound is regarded to be hardly degradable in comparison to n-alkanes and is thus frequently used as a reference parameter for indexing the extent of biodegradation of crude oils, it could be shown to be degraded by means of the incubation experiments. Thus, the site had a high inherent potential for natural attenuation of crude oils both in the vadose zone and the aquifer.


Subject(s)
Alkanes/metabolism , Bacteria/metabolism , Geologic Sediments/microbiology , Terpenes/metabolism , Water Pollutants, Chemical/metabolism , Alkanes/chemistry , Biodegradation, Environmental , Groundwater , Petroleum/analysis , Terpenes/chemistry , Water Pollutants, Chemical/chemistry
4.
Environ Sci Pollut Res Int ; 21(15): 9002-15, 2014.
Article in English | MEDLINE | ID: mdl-23589263

ABSTRACT

At many contaminated field sites in Europe, monitored natural attenuation is a feasible site remediation option. Natural attenuation includes several processes but only the microbial degradation leads to real contaminant removal and very few methods are accepted by the authorities providing real evidence of microbial contaminant degradation activity. One of those methods is the recently developed in situ microcosm approach (BACTRAP®). These in situ microcosms consist of perforated stainless steel cages or PTFE tubes filled with an activated carbon matrix that is amended with 13C-labelled contaminants; the microcosms are then exposed within groundwater monitoring wells. Based on this approach, natural attenuation was accepted by authorities as a site remediation option for the BTEX-polluted site Zeitz in Germany. Currently, the in situ microcosms are restricted to the use inside groundwater monitoring wells at the level of the aquifer. The (classical) system therefore is only applicable on field sites with a network of monitoring wells, and only microbial activity inside the monitoring wells at the level of the aquifer can be assessed. In order to overcome these limitations, a new Direct-Push BACTRAP probe was developed on the basis of the Geoprobe® equipment. With respect to the mechanical boundary conditions of the DP technique, these new probes were constructed in a rugged and segmented manner and are adaptable to various sampling concepts. With this new probe, the approach can be extended to field sites without existing monitoring wells, and microbial activity was demonstrated to be measureable even under very dry conditions inside the vadose zone above the aquifer. In a field test, classical and Direct-Push BACTRAPs were applied in the BTEX-contaminated aquifer at the ModelPROBE reference site Zeitz (Germany). Both types of BACTRAPs were incubated in the centre and at the fringe of the BTEX plume. Analysis of phospholipid fatty acid (PLFA) patterns showed that the bacterial communities on DP-BACTRAPs were more similar to the soil than those found on classical BACTRAPs. During microbial degradation of the (13)C-labelled substrate on the carrier material of the microcosms, the label was only slightly incorporated into bacterial biomass, as determined by PLFA analysis. This provides clear indication for decreased in situ natural attenuation potential in comparison to earlier sampling campaigns, which is presumably caused by a large-scale source remediation measure in the meantime. In conclusion, Direct-Push-based BACTRAPs offer a promising way to monitor natural attenuation or remediation success at field sites which are currently inaccessible by the technique due to the lack of monitoring wells or due to a main contamination present within the vadose zone.


Subject(s)
Biodegradation, Environmental , Environmental Microbiology , Environmental Monitoring/instrumentation , Groundwater/microbiology , Germany
5.
Water Res ; 47(2): 769-80, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23200508

ABSTRACT

For several pilot-scale constructed wetlands (CWs: a planted and unplanted gravel filter) and a hydroponic plant root mat (operating at two water levels), used for treating groundwater contaminated with BTEX, the fuel additive MTBE and ammonium, the hydrodynamic behavior was evaluated by means of temporal moment analysis of outlet tracer breakthrough curves (BTCs): hydraulic indices were related to contaminant mass removal. Detailed investigation of flow within the model gravel CWs allowed estimation of local flow rates and contaminant loads within the CWs. Best hydraulics were observed for the planted gravel filter (number of continuously stirred tank reactors N = 11.3, dispersion number = 0.04, Péclet number = 23). The hydroponic plant root mat revealed lower N and pronounced dispersion tendencies, whereby an elevated water table considerably impaired flow characteristics and treatment efficiencies. Highest mass removals were achieved by the plant root mat at low level: 98% (544 mg m⁻² d⁻¹), 78% (54 mg m⁻² d⁻¹) and 74% (893 mg m⁻² d⁻¹) for benzene, MTBE and ammonium-nitrogen, respectively. Within the CWs the flow behavior was depth-dependent, with the planting and the position of the outlet tube being key factors resulting in elevated flow rate and contaminant flux immediately below the densely rooted porous media zone in the planted CW, and fast bottom flow in the unplanted reference.


Subject(s)
Environmental Pollution , Environmental Restoration and Remediation/methods , Groundwater/chemistry , Limnology/methods , Models, Structural , Water Pollutants, Chemical/analysis , Wetlands , Benzene/analysis , Benzene/chemistry , Carcinogens, Environmental/analysis , Carcinogens, Environmental/chemistry , Carcinogens, Environmental/metabolism , Geologic Sediments/chemistry , Germany , Hydroponics , Methyl Ethers/analysis , Methyl Ethers/chemistry , Methyl Ethers/metabolism , Petroleum/analysis , Pilot Projects , Plant Roots/growth & development , Plant Roots/metabolism , Poaceae/growth & development , Poaceae/metabolism , Quaternary Ammonium Compounds/analysis , Quaternary Ammonium Compounds/chemistry , Species Specificity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical
6.
Environ Sci Technol ; 45(19): 8467-74, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21848285

ABSTRACT

To perform a general assessment of treatment efficiency, a mass balance study was undertaken for two types of constructed wetlands (CWs), planted gravel filters and plant root mat systems, for treating VOC (benzene; MTBE) polluted groundwater under field conditions. Contaminant fate was investigated in the respective water, plant, and atmosphere compartments by determining water and atmospheric contaminant loads and calculating contaminant plant uptake, thereby allowing for an extended efficiency assessment of CWs. Highest total VOC removal was achieved during summer, being pronounced for benzene compared to MTBE. According to the experimental results and the calculations generated by the balancing model, degradation in the rhizosphere and plant uptake accounted for the main benzene removal processes, of 76% and 13% for the gravel bed CW and 83% and 11% for the root mat system. Volatilization flux of benzene and MTBE was low (<5%) for the gravel bed CW, while in the root mat system direct contact of aqueous and gaseous phases favored total MTBE volatilization (24%). With this applied approach, we present detailed contaminant mass balances that allow for conclusive quantitative estimation of contaminant elimination and distribution processes (e.g., total, surface, and phytovolatilization, plant uptake, rhizodegradation) in CWs under field conditions.


Subject(s)
Environmental Restoration and Remediation/methods , Environmental Restoration and Remediation/standards , Volatile Organic Compounds/isolation & purification , Water Pollutants, Chemical/isolation & purification , Wetlands , Benzene/isolation & purification , Biodegradation, Environmental , Pilot Projects , Plant Roots/metabolism , Plant Transpiration/physiology , Seasons , Waste Disposal, Fluid
7.
Environ Pollut ; 159(12): 3769-76, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21840095

ABSTRACT

In this pilot-scale constructed wetland (CW) study for treating groundwater contaminated with benzene, MTBE, and ammonia-N, the performance of two types of CWs (a wetland with gravel matrix and a plant root mat) was investigated. Hypothesized stimulative effects of filter material additives (charcoal, iron(III)) on pollutant removal were also tested. Increased contaminant loss was found during summer; the best treatment performance was achieved by the plant root mat. Concentration decrease in the planted gravel filter/plant root mat, respectively, amounted to 81/99% for benzene, 17/82% for MTBE, and 54/41% for ammonia-N at calculated inflow loads of 525/603 mg/m(2)/d, 97/112 mg/m(2)/d, and 1167/1342 mg/m(2)/d for benzene, MTBE, and ammonia-N. Filter additives did not improve contaminant depletion, although sorption processes were observed and elevated iron(II) formation indicated iron reduction. Bacterial and stable isotope analysis provided evidence for microbial benzene degradation in the CW, emphasizing the promising potential of this treatment technique.


Subject(s)
Ammonia/metabolism , Bacteria/metabolism , Benzene/metabolism , Environmental Restoration and Remediation/methods , Groundwater/chemistry , Methyl Ethers/metabolism , Poaceae/metabolism , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Environmental Restoration and Remediation/instrumentation , Models, Biological , Pilot Projects , Plant Roots/metabolism , Wetlands
8.
Appl Environ Microbiol ; 72(8): 5342-8, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16885285

ABSTRACT

The understanding of microbial interactions and trophic networks is a prerequisite for the elucidation of the turnover and transformation of organic materials in soils. To elucidate the incorporation of biomass carbon into a soil microbial food web, we added 13C-labeled Escherichia coli biomass to an agricultural soil and identified those indigenous microbes that were specifically active in its mineralization and carbon sequestration. rRNA stable isotope probing (SIP) revealed that uncultivated relatives of distinct groups of gliding bacterial micropredators (Lysobacter spp., Myxococcales, and the Bacteroidetes) lead carbon sequestration and mineralization from the added biomass. In addition, fungal populations within the Microascaceae were shown to respond to the added biomass after only 1 h of incubation and were thus surprisingly reactive to degradable labile carbon. This RNA-SIP study identifies indigenous microbes specifically active in the transformation of a nondefined complex carbon source, bacterial biomass, directly in a soil ecosystem.


Subject(s)
Bacteria/classification , Bacteria/growth & development , Carbon Isotopes/metabolism , Escherichia coli/metabolism , Food Chain , Soil Microbiology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Biomass , Molecular Sequence Data , RNA, Bacterial/analysis , RNA, Bacterial/isolation & purification , RNA, Fungal/analysis , RNA, Fungal/isolation & purification , RNA, Ribosomal/genetics , Sequence Analysis, DNA , Soil/analysis
9.
Appl Microbiol Biotechnol ; 67(4): 569-76, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15729557

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are worldwide environmental pollutants. Their bioavailability is limited by a low aqueous solubility, which causes specific adaptations in degrading bacteria. To compare bacterial degrading behavior, a study was conducted on the mineralization, metabolization and formation of biomass from (14)C-anthracene by Sphingomonas sp. BA2 compared with those from (14)C-pyrene by Gordonia-like strain BP9 and Mycobacterium gilvum VF1. Different conditions of PAH supply were used in the medium: crystals <0.5 mm, microcrystals <<0.1 mm formed by sonication, or PAH solubilized in 2,2,4,4,6,8,8-heptamethylnonane (HMN) or silicone oil. Anthracene supply by crystals and silicone oil led to similar maximum mineralization rates 33 ng ml(-1) h(-1) and the same amount of mineralization (24%) after 168 h. Microcrystals increased the rates and amounts only slightly. HMN decreased the values to less than one-third. In comparison with crystals, microcrystals increased overall pyrene mineralization by strain BP9 from 53% to 58%, with maximum mineralization rates of 160 ng ml(-1) h(-1) and 166 ng ml(-1) h(-1). Silicone oil heavily increased the rate to 292 ng ml(-1) h(-1) and the amount mineralized to 71%, whereas HMN inhibited the degradation by one order of magnitude. A similar degradation behavior showing lower mineralization rates and extent was observed with strain VF1. However, inhibition by HMN was less pronounced. Sonication, leading to decreased PAH crystal size, increased the mass transfer and mineralization rates. PAH supply by silicone oil led to a much higher mass transfer, which may be due to emulsification of the oil, whereas such effects were not observed with HMN.


Subject(s)
Anthracenes/metabolism , Gordonia Bacterium/growth & development , Mycobacterium/growth & development , Pyrenes/metabolism , Sphingomonas/growth & development , Alkanes/metabolism , Biodegradation, Environmental , Biotechnology/methods , Crystallization , Environmental Pollutants/metabolism , Gordonia Bacterium/metabolism , Mycobacterium/metabolism , Oils/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Silicones/chemistry , Silicones/metabolism , Sphingomonas/metabolism , Water
10.
Environ Toxicol Chem ; 23(9): 2049-60, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15378978

ABSTRACT

Biological treatment of 2,4,6-trinitrotoluene (TNT) in soil rarely results in complete mineralization of the parent compound. More often, the largest proportion of the TNT carbon is incorporated into the soil organic matrix. Therefore, we evaluated the stability of nonextractable residues from various bioremediation processes of 14C-TNT in soils. The extractable amounts of the residual radioactivity varied between 7 and 33% and thus the nonextractable amount between 93 and 67% (3-15% in fulvic acids, 26-46% in humic acids, and 27-44% in the humin fraction). The residue-containing soils were analyzed for the release of radioactivity after treatment by physical (freeze and thaw, grinding of soil, and steam extraction), chemical (acid rain and addition of metal complexing agent), and biological methods (addition of compost, white rot fungi, radical-generating enzymes, and germination of plants). Freeze and thaw treatment and grinding of the soil did not alter the partitioning of the label significantly. Steam extraction and acid rain extraction increased the water extractability to 11 to 29% and to 51.6% in the native TNT-contaminated soil. The addition of ethylenediamine-tetraacetate (EDTA) increased the extractability from 7 to 12%. After biological treatment, only slightly increased extractability (<10%) was observed. No increase of extractable TNT or known metabolites was observed with any of the treatments. Thus, under the treatment conditions applied in this study, the residues formed during microbial transformation of TNT may be biogenic residues with low mobilization potential and low hazardous impact.


Subject(s)
Agaricales/metabolism , Polyporales/metabolism , Soil Microbiology , Soil Pollutants/analysis , Soil/analysis , Trinitrotoluene/analysis , Biodegradation, Environmental , Carbon Radioisotopes , Drug Stability , Germany , Hazardous Substances/analysis , Hazardous Substances/metabolism , Humic Substances/analysis , Soil Pollutants/metabolism , Trinitrotoluene/metabolism , Waste Management/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...