Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 69(9): 2289-302, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26222781

ABSTRACT

Populations receiving high maladaptive gene flow are expected to experience strong directional selection-because gene flow pulls mean phenotypes away from local fitness peaks. We tested this prediction by means of a large and replicated mark-recapture study of threespine stickleback (Gasterosteus aculeatus) in two stream populations. One of the populations (outlet) experiences high gene flow from the lake population and its morphology is correspondingly poorly adapted. The other population (inlet) experiences very low gene flow from the lake population and its morphology is correspondingly well adapted. Contrary to the above prediction, selection was not stronger in the outlet than in the inlet, a result that forced us to consider potential reasons for why maladaptive gene flow might not increase selection. Of particular interest, we show by means of a simple population genetic model that maladaptive gene flow can-under reasonable conditions-decrease the strength of directional selection. This outcome occurs when immigrants decrease mean fitness in the resident population, which decreases the strength of selection against maladapted phenotypes. We argue that this previously unrecognized effect of gene flow deserves further attention in theoretical and empirical studies.


Subject(s)
Gene Flow , Genetics, Population , Selection, Genetic , Smegmamorpha/genetics , Adaptation, Biological/genetics , Animal Migration , Animals , British Columbia , Rivers , Smegmamorpha/anatomy & histology
2.
Evolution ; 67(12): 3429-41, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24299398

ABSTRACT

Evolutionary inferences are usually based on statistical models that compare mean genotypes or phenotypes (or their frequencies) among populations. An alternative is to use the full distribution of genotypes and phenotypes to infer the "exchangeability" of individuals among populations. We illustrate this approach by using discriminant functions on principal components to classify individuals among paired lake and stream populations of threespine stickleback in each of six independent watersheds. Classification based on neutral and nonneutral microsatellite markers was highest to the population of origin and next highest to populations in the same watershed. These patterns are consistent with the influence of historical contingency (separate colonization of each watershed) and subsequent gene flow (within but not between watersheds). In comparison to this low genetic exchangeability, ecological (diet) and morphological (trophic and armor traits) exchangeability was relatively high-particularly among populations from similar habitats. These patterns reflect the role of natural selection in driving parallel adaptive changes when independent populations colonize similar habitats. Importantly, however, substantial nonparallelism was also evident. Our results show that analyses based on exchangeability can confirm inferences based on statistical analyses of means or frequencies, while also refining insights into the drivers of-and constraints on-evolutionary diversification.


Subject(s)
Evolution, Molecular , Genetic Speciation , Smegmamorpha/genetics , Animals , Ecosystem , Microsatellite Repeats/genetics , Selection, Genetic
3.
PLoS One ; 8(8): e71052, 2013.
Article in English | MEDLINE | ID: mdl-23990925

ABSTRACT

Metapopulation dynamics over the course of an invasion are usually difficult to grasp because they require large and reliable data collection, often unavailable. The invasion of the fish-free freshwater ecosystems of the remote sub-Antarctic Kerguelen Islands following man-made introductions of brown trout (Salmo trutta) in the 1950's is an exception to this rule. Benefiting from a full long term environmental research monitoring of the invasion, we built a Bayesian dynamic metapopulation model to analyze the invasion dynamics of 85 river systems over 51 years. The model accounted for patch size (river length and connections to lakes), alternative dispersal pathways between rivers, temporal trends in dynamics, and uncertainty in colonization date. The results show that the model correctly represents the observed pattern of invasion, especially if we assume a coastal dispersal pathway between patches. Landscape attributes such as patch size influenced the colonization function, but had no effect on propagule pressure. Independently from patch size and distance between patches, propagule pressure and colonization function were not constant through time. Propagule pressure increased over the course of colonization, whereas the colonization function decreased, conditional on propagule pressure. The resulting pattern of this antagonistic interplay is an initial rapid invasion phase followed by a strong decrease in the invasion rate. These temporal trends may be due to either adaptive processes or environmental gradients encountered along the colonization front. It was not possible to distinguish these two hypotheses. Because invasibility of Kerguelen Is. freshwater ecosystems is very high due to the lack of a pre-existing fish fauna and minimal human interference, our estimates of invasion dynamics represent a blueprint for the potential of brown trout invasiveness in pristine environments. Our conclusions shed light on the future of polar regions where, because of climate change, fish-free ecosystems become increasingly accessible to invasion by fish species.


Subject(s)
Introduced Species , Trout/physiology , Animals , Antarctic Regions , Bayes Theorem , Ecology , Ecosystem , Environmental Monitoring/methods , Fishes , Fresh Water , Models, Theoretical , Population Dynamics , Probability , Rivers , Stochastic Processes , Time Factors
4.
Evolution ; 66(2): 402-18, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22276537

ABSTRACT

Parallel (or convergent) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some nonparallel evolution is present. It is therefore important to explicitly quantify the parallel and nonparallel aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in six independent watersheds. Morphological traits differed in the degree to which lake-stream divergence was parallel across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lake-stream divergence in genetic markers was associated within some of the lake-stream divergence in morphological traits. Our results suggest that parallel evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respects to the dichotomous habitat classifications frequently used in such studies.


Subject(s)
Biological Evolution , Ecosystem , Smegmamorpha/anatomy & histology , Smegmamorpha/genetics , Animals , British Columbia , Diet , Gills/anatomy & histology , Lakes , Phenotype , Rivers
5.
Biol Lett ; 4(5): 504-7, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18583275

ABSTRACT

A classical paradigm in population genetics is that homozygosity or inbreeding affects individual fitness through increased disease susceptibility and mortality, and diminished breeding success. Using data from an insular population of mouflon (Ovis aries) founded by a single pair of individuals, we compare embryo number of ewes with different levels of inbreeding. Contrary to expectations, ewes with the highest levels of homozygosity showed the largest number of embryos. Using two different statistical approaches, we showed that this relationship is probably caused by heterozygosity at specific genes. The genetics of embryo number coupled with cyclic dynamics could play a central role in promoting genetic variation in this population.


Subject(s)
Genetic Variation , Inbreeding , Litter Size , Sheep, Domestic/genetics , Animals , Female , Logistic Models , Microsatellite Repeats , Pregnancy , Sheep, Domestic/embryology
6.
Mol Ecol ; 16(21): 4482-92, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17868310

ABSTRACT

The Haute Island mouflon (Ovis aries) population is isolated on one small (6.5 km2) island of the remote Kerguelen archipelago. Given a promiscuous mating system, a cyclic demography and a strong female-biased sex ratio after population crashes, we expected a low effective population size (Ne). We estimated Ne using demographic and temporal genetic approaches based on genetic information at 25 microsatellite loci from 62 and 58 mouflons sampled in 1988 and 2003, respectively. Genetic Ne estimates were higher than expected, varying between 104 and 250 depending on the methods used. Both demographic and genetic approaches show the Haute Island Ne is buffered against population crashes. The unexpectedly high Ne likely results from the cyclic winter crashes that allow young males to reproduce, limiting the variance of male reproductive success. Based on individual-based simulations, we suggest that despite a strongly female-biased sex ratio, the effects of the mating system on the effective population size more closely resemble random mating or weak polygyny.


Subject(s)
Sheep, Domestic/physiology , Animals , Computer Simulation , Female , Gene Frequency , Geography , Male , Microsatellite Repeats , Population Dynamics , Sex Ratio , Sexual Behavior, Animal , Sheep, Domestic/genetics
7.
Proc Biol Sci ; 274(1609): 527-33, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17476773

ABSTRACT

In population and conservation genetics, there is an overwhelming body of evidence that genetic diversity is lost over time in small populations. This idea has been supported by comparative studies showing that small populations have lower diversity than large populations. However, longitudinal studies reporting a decline in genetic diversity throughout the whole history of a given wild population are much less common. Here, we analysed changes in heterozygosity over time in an insular mouflon (Ovis aries) population founded by two individuals in 1957 and located on one of the most isolated locations in the world: the Kerguelen Sub-Antarctic archipelago. Heterozygosity measured using 25 microsatellite markers has actually increased over 46 years since the introduction, and exceeds the range predicted by neutral genetic models and stochastic simulations. Given the complete isolation of the population and the short period of time since the introduction, changes in genetic variation cannot be attributed to mutation or migration. Several lines of evidence suggest that the increase in heterozygosity with time may be attributable to selection. This study shows the importance of longitudinal genetic surveys for understanding the mechanisms that regulate genetic diversity in wild populations.


Subject(s)
Genetic Variation , Heterozygote , Sheep, Domestic/genetics , Animals , Geography , Microsatellite Repeats , Models, Genetic , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL