Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Talanta ; 277: 126406, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38901193

ABSTRACT

An electrochemical free chlorine sensor was developed by modifying a lab-made screen-printed carbon electrode (SPCE) with gold nanoparticles synthesized with polyvinylpyrrolidone (AuNPs-PVP). The electrode was made by screen printing carbon ink on a waste digital versatile disc (SPC-wDVD). PVP was used to stabilize AuNPs. Scanning electron microscopy showed that AuNPs aggregated without the stabilizer. The electrochemical behavior of the SPC-wDVD was evaluated by comparison with commercial SPCEs from two companies. Electrochemical characterization involved cyclic voltammetry and electrochemical impedance spectroscopy. The detection of free chlorine in water samples was continuous, facilitated by a flow-injection system. In the best condition, the developed sensor exhibited linearity from 0.25 to 3.0 and 3.0 to 500 mg L-1. The limit of detection was 0.1 mg L-1. The stability of the sensor enabled the detection of free chlorine at least 475 times with an RSD of 3.2 %. The AuNPs-PVP/SPC-wDVD was able to detect free chlorine in drinking water, tap water and swimming pool water. The agreement between the results obtained with the proposed method and the standard spectrophotometric method confirmed the precision of the developed sensor.

2.
Talanta ; 273: 125857, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38490024

ABSTRACT

An electrochemical aptasensor was developed for the determination of chloramphenicol (CAP) in fresh foods and food products. The aptasensor was developed using Prussian blue (PB) and chitosan (CS) film. PB acts as a redox probe for detection and CS acts as a sorption material. The aptamer (Apt) was immobilized on a screen-printed carbon electrode (SPCE) modified with gold nanoparticles (AuNPs). Under optimum conditions, the linearity of the aptasensor was between 1.0 and 6.0 × 106 ng L-1 with a detection limit of 0.65 and a quantification limit of 2.15 ng L-1. The electrode could be regenerated up to 24 times without the use of chemicals. The aptasensor showed good repeatability (RSD <11.2%) and good reproducibility (RSD <7.7%). The proposed method successfully quantified CAP in milk, shrimp pond water and shrimp meat with good accuracy (recovery = 88.0 ± 0.6% to 100 ± 2%). The proposed aptasensor could be especially useful in agriculture to ensure the quality of food and the environment and could be used to determine other antibiotics.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Chitosan , Ferrocyanides , Metal Nanoparticles , Carbon , Gold , Limit of Detection , Chloramphenicol/analysis , Reproducibility of Results , Electrodes , Meat , Biosensing Techniques/methods , Electrochemical Techniques/methods
3.
Food Chem ; 369: 130769, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34461509

ABSTRACT

A colorimetric indicator cube for use in smart packaging was designed and fabricated to detect ethanol produced by microbial fermentation in preserved baby mangoes. The presence and level of ethanol was indicated by color variations of the indicator cube, which consists of porous melamine foam (MF) that entraps an indicator solution of potassium dichromate and sulfuric acid. Within the packaging, the cube sits behind a gas-permeable membrane. The morphological structure of MF was studied by digital microscope and X-ray fluorescence analysis. In the optimal condition, the indicator cube exhibited distinct color changes from yellow to brown, green and blue over an ethanol concentration range from 0.25% to 5.0%. Color changes were clearly visible to the naked eye. The repeatability of the ethanol indicator cube was good and storage stability was maintained for up to 19 and 74 days at room and refrigeration temperatures, respectively. The smart packaging was applied to detect ethanol in preserved baby mangoes at different storage times.


Subject(s)
Colorimetry , Mangifera , Ethanol , Product Packaging , Refrigeration
SELECTION OF CITATIONS
SEARCH DETAIL