Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37630973

ABSTRACT

Lantibiotics are believed to have a conceivable potential to be used as therapeutics, especially against clinically resistant bacterial strains. However, their low solubility and poor stability under physiological conditions limit their availability for clinical studies and further pharmaceutical commercialization. Nisin is a readily available and cheap lanthipeptide and thus serves as a good model in the search for the tools to engineer lantibiotics with improved pharmacological properties. This review aims to address technologies that can be applied to alter and enhance the antimicrobial activity, antibacterial spectrum and physicochemical properties (solubility, solution stability and protease resistance) of nisin. There are basically two general means to obtain nisin analogs-protein engineering and chemical functionalization of this antibiotic. Although bioengineering techniques have been well developed and enable the creation of nisin mutants of variable structures and properties, they are lacking spectacular effects so far. Chemical modifications of nisin based on utilization of the reactivity of its free amino and carboxylic moieties, as well as reactivity of the double bonds of its dehydroamino acids, are in their infancy.

2.
Molecules ; 28(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049896

ABSTRACT

A one-pot lithiation-phosphonylation procedure was elaborated as a method to prepare heteroaromatic phosphonic acids. It relied on the direct lithiation of heteroaromatics followed by phosphonylation with diethyl chlorophosphite and then oxidation with hydrogen peroxide. This protocol provided the desired phosphonates with satisfactory yields. This procedure also had some limitations in its dependence on the accessibility and stability of the lithiated heterocyclic compounds. The same procedure could be applied to phosphonylation of aromatic compounds, which do not undergo direct lithiation and thus require the use of their bromides as substrates. The obtained compounds showed weak antiproliferative activity when tested on three cancer cell lines.

4.
Molecules ; 27(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35565962

ABSTRACT

The incorporation of dehydroamino acid or fragments of oxazole into peptide chain is accompanied by a distorted three-dimensional structure and additionally enables the introduction of non-typical side-chain substituents. Thus, such compounds could be building blocks for obtaining novel foldamers and/or artificial enzymes (artzymes). In this paper, effective synthetic procedures leading to such building blocks-tetrapeptides containing glycyldehydroalanine, glycyldehydrophenylalanine, and glycyloxazole subunits-are described. Peptides containing serine were used as substrates for their conversion into peptides containing dehydroalanine and aminomethyloxazole-4-carboxylic acid while considering possible requirements for the introduction of these fragments into long-chain peptides at the last steps of synthesis.


Subject(s)
Alanine , Oxazoles , Alanine/analogs & derivatives , Alanine/chemistry , Oxazoles/chemistry , Peptides/chemistry , Phenylalanine/analogs & derivatives
5.
Chem Biodivers ; 19(5): e202101019, 2022 May.
Article in English | MEDLINE | ID: mdl-35343636

ABSTRACT

Synthesis of a new group of hybrid phosphonodehydropeptides composed of glycyl-(Z)-dehydrophenylalanine and structurally variable aminophosphonates alongside with investigations of their activity towards cathepsin C are presented. Obtained results suggest that the introduction of (Z)-dehydrophenylalanine residue into the short phosphonopeptide chain does induce the ordered conformation. Investigated peptides appeared to act as weak or moderate inhibitors of cathepsin C.


Subject(s)
Peptidomimetics , Cathepsin C/metabolism , Molecular Conformation , Peptides/chemistry , Peptidomimetics/pharmacology
6.
J Pharm Anal ; 11(3): 364-373, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34277124

ABSTRACT

There is a strong need to search for more effective compounds with bone anti-resorptive properties, which will cause fewer complications than commonly used bisphosphonates. To achieve this goal, it is necessary to search for new techniques to characterize the interactions between bone and drug. By studying their interaction with hydroxyapatite (HA), this study used three forms of ceramic materials, two of which are bone-stimulating materials, to assess the suitability of new active substances with anti-resorptive properties. In this study, three methods based on HA in loose form, polycaprolactone/HA (a polymer-ceramic materials containing HA), and polymer-ceramic monolithic in-needle extraction (MINE) device (a polymer inert skeleton), respectively, were used. The affinity of risedronate (a standard compound) and sixteen aminomethylenebisphosphonates (new compounds with potential antiresorptive properties) to HA was defined according to the above-mentioned methods. Ten monolithic materials based on 2-hydroxyethyl methacrylate/ethylene dimethacrylate are prepared and studied, of which one was selected for more-detailed further research. Simulated body fluids containing bisphosphonates were passed through the MINE device. In this way, sorption-desorption of bisphosphonates was evaluated using this MINE device. The paper presents the advantages and disadvantages of each technique and its suitability for assessing new active substances. All three methods allow for the selection of several compounds with potentially higher anti-resorptive properties than risedronate, in hope that it reflects their higher bone affinity and release ability.

7.
Org Biomol Chem ; 19(22): 4871-4876, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34002761

ABSTRACT

A one-pot, regioselective 1,3-dipolar cycloaddition of in situ generated (diethoxyphosphoryl)difluoromethyl nitrile oxide toward selected alkenes and alkynes is reported. This protocol enables facile access to 3,5-disubstituted isoxazolines and isoxazoles bearing a CF2P(O)(OEt)2 moiety in good to excellent yields, under mild reaction conditions.

9.
Int J Mol Sci ; 22(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671589

ABSTRACT

BACKGROUND: Dehydropeptides are analogs of peptides containing at least one conjugate double bond between α,ß-carbon atoms. Its presence provides unique structural properties and reaction centre for chemical modification. In this study, the series of new class of dipeptides containing S-substituted dehydrocysteine with variety of heterocyclic moieties was prepared. The compounds were designed as the building blocks for the construction of artificial metalloenzymes (artzymes). Therefore, the complexing properties of representative compounds were also evaluated. Furthermore, the acknowledged biological activity of natural dehydropeptides was the reason to extend the study for antiproliferative action of against several cancer cell lines. METHODS: The synthetic strategy involves glycyl and phenylalanyl-(Z)-ß-bromodehydroalanine as a substrate in one pot addition/elimination reaction of thiols. After deprotection of N-terminal amino group the compounds with triazole ring were tested as complexones for copper(II) ions using potentiometric titration and spectroscopic techniques (UV-Vis, CD, EPR). Finally, the antiproliferative activity was evaluated by sulforhodamine B assay. RESULTS AND CONCLUSIONS: A simple and efficient procedure for preparation of dipeptides containing S-substituded dehydrocysteine was provided. The peptides containing triazole appeared to be strong complexones of copper(II) ions. Some of the peptides exhibited promising antiproliferative activities against number of cancer cell lines, including cell lines resistant to widely used anticancer agent.


Subject(s)
Antineoplastic Agents/pharmacology , Dipeptides/chemistry , Dipeptides/pharmacology , Animals , Antineoplastic Agents/chemistry , BALB 3T3 Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Copper/chemistry , Cysteine/chemistry , Dipeptides/chemical synthesis , Drug Screening Assays, Antitumor , Enzymes/chemistry , Humans , Hydrogen-Ion Concentration , Mice , Structure-Activity Relationship
10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-908756

ABSTRACT

There is a strong need to search for more effective compounds with bone anti-resorptive properties,which will cause fewer complications than commonly used bisphosphonates.To achieve this goal,it is necessary to search for new techniques to characterize the interactions between bone and drug.By studying their interaction with hydroxyapatite (HA),this study used three forms of ceramic materials,two of which are bone-stimulating materials,to assess the suitability of new active substances with anti-resorptive properties.In this study,three methods based on HA in loose form,polycaprolactone/HA (a polymer-ceramic materials containing HA),and polymer-ceramic monolithic in-needle extraction(MINE) device (a polymer inert skeleton),respectively,were used.The affinity of risedronate (a standard compound) and sixteen aminomethylenebisphosphonates (new compounds with potential anti-resorptive properties) to HA was defined according to the above-mentioned methods.Ten monolithic materials based on 2-hydroxyethyl methacrylate/ethylene dimethacrylate are prepared and studied,of which one was selected for more-detailed further research.Simulated body fluids containing bisphosphonates were passed through the MINE device.In this way,sorption-desorption of bisphosphonates was evaluated using this MINE device.The paper presents the advantages and disad-vantages of each technique and its suitability for assessing new active substances.All three methods allow for the selection of several compounds with potentially higher anti-resorptive properties than risedronate,in hope that it reflects their higher bone affinity and release ability.

11.
Biomolecules ; 10(9)2020 09 14.
Article in English | MEDLINE | ID: mdl-32938014

ABSTRACT

A library of novel phosphonic acid analogues of homophenylalanine and phenylalanine, containing fluorine and bromine atoms in the phenyl ring, have been synthesized. Their inhibitory properties against two important alanine aminopeptidases, of human (hAPN, CD13) and porcine (pAPN) origin, were evaluated. Enzymatic studies and comparison with literature data indicated the higher inhibitory potential of the homophenylalanine over phenylalanine derivatives towards both enzymes. Their inhibition constants were in the submicromolar range for hAPN and the micromolar range for pAPN, with 1-amino-3-(3-fluorophenyl) propylphosphonic acid (compound 15c) being one of the best low-molecular inhibitors of both enzymes. To the best of our knowledge, P1 homophenylalanine analogues are the most active inhibitors of the APN among phosphonic and phosphinic derivatives described in the literature. Therefore, they constitute interesting building blocks for the further design of chemically more complex inhibitors. Based on molecular modeling simulations and SAR (structure-activity relationship) analysis, the optimal architecture of enzyme-inhibitor complexes for hAPN and pAPN were determined.


Subject(s)
Aminobutyrates/chemical synthesis , CD13 Antigens/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Phenylalanine/chemical synthesis , Phosphorous Acids/chemical synthesis , Small Molecule Libraries/chemical synthesis , Aminobutyrates/pharmacology , Animals , Binding Sites , Bromine/chemistry , CD13 Antigens/chemistry , CD13 Antigens/metabolism , Enzyme Inhibitors/pharmacology , Fluorine/chemistry , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Isoenzymes/metabolism , Kinetics , Models, Molecular , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Phosphorous Acids/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Substrate Specificity , Swine , Thermodynamics
12.
Molecules ; 25(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971789

ABSTRACT

Peptidyl enzyme inhibitors containing an internal aminomethylphosphinic bond system (P(O)(OH)-CH2-NH) can be termed extended transition state analogs by similarity to the corresponding phosphonamidates (P(O)(OH)-NH). Phosphonamidate pseudopeptides are broadly recognized as competitive mechanism-based inhibitors of metalloenzymes, mainly hydrolases. Their practical use is, however, limited by hydrolytic instability, which is particularly restricting for dipeptide analogs. Extension of phosphonamidates by addition of the methylene group produces a P-C-N system fully resistant in water conditions. In the current work, we present a versatile synthetic approach to such modified dipeptides, based on the three-component phospha-Mannich condensation of phosphinic acids, formaldehyde, and N-benzylglycines. The last-mentioned component allowed for simple and versatile introduction of functionalized P1' residues located on the tertiary amino group. The products demonstrated moderate inhibitory activity towards porcine and plant metalloaminopeptidases, while selected derivatives appeared very potent with human alanyl aminopeptidase (Ki = 102 nM for 6a). Analysis of ligand-protein complexes obtained by molecular modelling revealed canonical modes of interactions for mono-metallic alanyl aminopeptidases, and distorted modes for di-metallic leucine aminopeptidases (with C-terminal carboxylate, not phosphinate, involved in metal coordination). In general, the method can be dedicated to examine P1'-S1' complementarity in searching for non-evident structures of specific residues as the key fragments of perspective ligands.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Benzene/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Peptides/chemistry , Peptides/pharmacology , Phosphorus/chemistry , Humans , Models, Molecular , Molecular Conformation , Stereoisomerism , Thermodynamics
13.
J Org Chem ; 85(22): 14779-14784, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32527088

ABSTRACT

The hydrogenation of N-substituted vinylphosphonates using rhodium complexes derived from P-OP ligands L1, ent-L1, or (R,R)-Me-DuPHOS as catalysts has been successfully accomplished, achieving very high levels of stereoselectivity (up to 99% ee or de). The described synthetic strategy allowed for the efficient preparation of α-aminophosphonic acid derivatives and phosphonopeptides, which are valuable building blocks for the preparation of biologically relevant molecules.

14.
Biomolecules ; 10(4)2020 04 09.
Article in English | MEDLINE | ID: mdl-32283833

ABSTRACT

A library of phosphonic acid analogs of phenylalanine substituted with fluorine, chlorine and trifluoromethyl moieties on the aromatic ring was synthesized and evaluated for inhibitory activity against human (hAPN) and porcine (pAPN) aminopeptidases. Fluorogenic screening indicated that these analogs are micromolar or submicromolar inhibitors, both enzymes being more active against hAPN. In order to better understand the mode of the action of the most active compounds, molecular modeling was used. It confirmed that aminophosphonic portion of the enzyme is bound nearly identically in the case of all the studied compounds, whereas the difference in activity results from the placement of aromatic side chain of an inhibitor. Interestingly, both enantiomers of the individual compounds are usually bound quite similarly.


Subject(s)
CD13 Antigens/antagonists & inhibitors , Phosphorous Acids/chemistry , Phosphorous Acids/pharmacology , Animals , Enzyme Assays , Humans , Models, Molecular , Molecular Docking Simulation , Reproducibility of Results , Stereoisomerism , Swine
15.
Molecules ; 25(6)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32245019

ABSTRACT

A three-component reaction between diamines (diaminobenzenes, diaminocyclohexanes, and piperazines), triethyl orthoformate, and diethyl phosphite was studied in some detail. In the case of 1,3- and 1,4-diamines and piperazines, products of the substitution of two amino moieties-the corresponding tetraphosphonic acids-were obtained. In the cases of 1,2-diaminobenzene, 1,2-diaminocyclohexanes and 1,2-diaminocyclohexenes, only one amino group reacted. This is most likely the result of the formation of hydrogen bonding between the phosphonate oxygen and a hydrogen of the adjacent amino group, which caused a decrease in the reactivity of the amino group. Most of the obtained compounds inhibited the proliferation of RAW 264.7 macrophages, PC-3 human prostate cancer cells, and MCF-7 human breast cancer cells, with 1, trans-7, and 16 showing broad nonspecific activity, which makes these compounds especially interesting in the context of anti-osteolytic treatment and the blocking of interactions and mutual activation of osteoclasts and tumor metastatic cells. These compounds exhibit similar activity to zoledronic acid and higher activity than incadronic acid, which were used as controls. However, studies of sheep with induced osteoporosis carried out with compound trans-7 did not support this assumption.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Diamines/chemistry , Osteoclasts/drug effects , Phosphites/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Humans , MCF-7 Cells , Magnetic Resonance Spectroscopy , Mice , Structure-Activity Relationship
16.
RSC Adv ; 10(40): 24045-24056, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-35517327

ABSTRACT

Aminophosphonates are an important group of building blocks in medicinal and pharmaceutical chemistry. Novel representatives of this class of compounds containing nontypical side chains are still needed. The aza-Michael-type addition of amines to phosphonodehydroalanine derivatives provides a simple and effective approach for synthesizing N'-substituted α,ß-diaminoethylphosphonates and thus affords general access to aminophosphonates bearing structurally diverse side chains. Thermodynamic analysis of the chosen aminophosphonates at physiological pH proves that they serve as potent chelators for copper(ii) ions and moderate chelators for nickel(ii) ions.

17.
RSC Adv ; 10(43): 25898-25910, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-35518575

ABSTRACT

Phosphonopeptides are mimetics of peptides in which phosphonic acid or related (phosphinic, phosphonous etc.) group replaces either carboxylic acid group present at C-terminus, is located in the peptidyl side chain, or phosphonamidate or phosphinic acid mimics peptide bond. Acting as inhibitors of key enzymes related to variable pathological states they display interesting and useful physiologic activities with potential applications in medicine and agriculture. Since the synthesis and biological properties of peptides containing C-terminal diaryl phosphonates and those with phosphonic fragment replacing peptide bond were comprehensively reviewed, this review concentrate on peptides holding free, unsubstituted phosphonic acid moiety. There are two groups of such mimetics: (i) peptides in which aminophosphonic acid is located at C-terminus of the peptide chain with most of them (including antibiotics isolated from bacteria and fungi) exhibiting antimicrobial activity; (ii) non-hydrolysable analogues of phosphonoamino acids, which are useful tools to study physiologic effects of phosphorylations.

18.
Methods Mol Biol ; 2103: 287-301, 2020.
Article in English | MEDLINE | ID: mdl-31879934

ABSTRACT

Peptide analogs modified with a phosphorus-based moiety (phosphonate, phosphonamidate, or phosphinate) have emerged as invaluable tools in fundamental and medicinal, mechanistic, and inhibitory studies of proteolytic enzymes and other catalytic proteins that process the amino acids and peptides. The first stages of the chemical synthesis of these compounds frequently involve formation of peptide or pseudopeptide bond between a suitably protected α-amino acid and an α-aminoalkyl phosphorus derivative. These preparative protocols are distinct from conventional solution and solid-phase peptide syntheses that have become routine and automatized. In the following chapter, we describe in details the methods and techniques utilized to perform this nonstandard coupling and to obtain P-terminal dipeptidyl phosphonates and pseudodipeptides containing the internal phosphonamidate or phosphinate linkages. Methods of products' purification, the deprotection conditions, and stability issues are also presented and discussed.


Subject(s)
Dipeptides , Peptides/chemical synthesis , Phosphorus , Solid-Phase Synthesis Techniques/methods , Amino Acids/chemistry , Dipeptides/chemistry , Molecular Structure , Peptides/chemistry , Phosphorus/chemistry
19.
Pharmaceuticals (Basel) ; 12(3)2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31533309

ABSTRACT

The inhibitory activity of 14 racemic phosphonic acid analogs of phenylglycine, substituted in aromatic rings, towards porcine aminopeptidase N (pAPN) and barley seed aminopeptidase was determined experimentally. The obtained patterns of the inhibitory activity against the two enzymes were similar. The obtained data served as a basis for studying the binding modes of these inhibitors by pAPN using molecular modeling. It was found that their aminophosphonate fragments were bound in a highly uniform manner and that the difference in their affinities most likely resulted from the mode of substitution of their phenyl rings. The obtained binding modes towards pAPN were compared, with these predicted for bovine lens leucine aminopeptidase (blLAP) and tomato acidic leucine aminopeptidase (tLAPA). The performed studies indicated that the binding manner of the phenylglycine analogs to biLAP and tLAPA are significantly similar and differ slightly from that predicted for pAPN.

20.
ACS Omega ; 4(5): 9056-9064, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31459993

ABSTRACT

The reaction of the title lactams with triethyl phosphite prompted by phosphoryl chloride provided six-membered ring heterocyclic phosphonates or bisphosphonates. These novel scaffolds might be of interest as building blocks in medicinal chemistry. The course of the reaction was dependent on the structure of the used substrate. Thus, morpholin-3-one and thiomorpholin-3-one readily provided the corresponding 1,1-bisphosphonates (compounds 1, 2, 7, 14 and 16), whereas the protection of their nitrogen atom resulted in the formation of dehydrophosphonates (compounds 5, 6, and 8). Piperazin-2-one reacted differently yielding mixture of cis- and trans- piperazine-2,3-diyl-bisphosphonates (compounds 10 and 11). Since cytosine could be considered as an analogue of piperin-2-one, its ditosyl derivative 18 was used as a substrate affording compound 19 being a product of phosphite addition to double bond. In dependence of their structures, hydrolysis of the obtained diethyl phosphonates resulted either in corresponding cyclic phosphonic acids or in the degradation of carbon-to-phosphorus bond.

SELECTION OF CITATIONS
SEARCH DETAIL
...