Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Biol Sex Differ ; 15(1): 39, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715106

ABSTRACT

BACKGROUND: Early life adversity impairs hippocampal development and function across diverse species. While initial evidence indicated potential variations between males and females, further research is required to validate these observations and better understand the underlying mechanisms contributing to these sex differences. Furthermore, most of the preclinical work in rodents was performed in adult males, with only few studies examining sex differences during adolescence when such differences appear more pronounced. To address these concerns, we investigated the impact of limited bedding (LB), a mouse model of early adversity, on hippocampal development in prepubescent and adolescent male and female mice. METHODS: RNA sequencing, confocal microscopy, and electron microscopy were used to evaluate the impact of LB and sex on hippocampal development in prepubescent postnatal day 17 (P17) mice. Additional studies were conducted on adolescent mice aged P29-36, which included contextual fear conditioning, retrograde tracing, and ex vivo diffusion magnetic resonance imaging (dMRI). RESULTS: More severe deficits in axonal innervation and myelination were found in the perforant pathway of prepubescent and adolescent LB males compared to LB female littermates. These sex differences were due to a failure of reelin-positive neurons located in the lateral entorhinal cortex (LEC) to innervate the dorsal hippocampus via the perforant pathway in males, but not LB females, and were strongly correlated with deficits in contextual fear conditioning. CONCLUSIONS: LB impairs the capacity of reelin-positive cells located in the LEC to project and innervate the dorsal hippocampus in LB males but not female LB littermates. Given the critical role that these projections play in supporting normal hippocampal function, a failure to establish proper connectivity between the LEC and the dorsal hippocampus provides a compelling and novel mechanism to explain the more severe deficits in myelination and contextual freezing found in adolescent LB males.


Childhood adversity, such as severe deprivation and neglect, leads to structural changes in human brain development that are associated with learning deficits and behavioral difficulties. Some of the most consistent findings in individuals exposed to childhood adversity are reduced hippocampal volume and abnormal hippocampal function. This is important because the hippocampus is necessary for learning and memory, and it plays a crucial role in depression and anxiety. Although initial studies suggested more pronounced hippocampal deficits in men, additional research is needed to confirm these findings and to elucidate the mechanisms responsible for these sex differences. We found that male and female mice exposed to early impoverishment and deprivation exhibit similar structural changes to those observed in deprived children. Interestingly, adolescent male mice, but not females, display severe deficits in their ability to freeze when placed back in a box where they were previously shocked. The ability to associate "shock/danger" with a "box/place" is referred to as contextual fear conditioning and requires normal connections between the entorhinal cortex and the hippocampus. We found that these connections did not form properly in male mice exposed to impoverished conditions, but they were only minimally affected in females. These findings appear to explain why exposure to impoverished conditions impairs contextual fear conditioning in male mice but not in female mice. Additional work is needed to determine whether similar sex-specific changes in these connections are also observed in adolescents exposed to neglect and deprivation.


Subject(s)
Hippocampus , Memory , Mice, Inbred C57BL , Perforant Pathway , Reelin Protein , Sex Characteristics , Animals , Male , Female , Hippocampus/metabolism , Fear , Mice , Stress, Psychological
2.
bioRxiv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38405887

ABSTRACT

Abnormal development and function of the hippocampus are two of the most consistent findings in humans and rodents exposed to early life adversity, with males often being more affected than females. Using the limited bedding (LB) paradigm as a rodent model of early life adversity, we found that male adolescent mice that had been exposed to LB exhibit significant deficits in contextual fear conditioning and synaptic connectivity in the hippocampus, which are not observed in females. This is linked to altered developmental refinement of connectivity, with LB severely impairing microglial-mediated synaptic pruning in the hippocampus of male and female pups on postnatal day 17 (P17), but not in adolescent P33 mice when levels of synaptic engulfment by microglia are substantially lower. Since the hippocampus undergoes intense synaptic pruning during the second and third weeks of life, we investigated whether microglia are required for the synaptic and behavioral aberrations observed in adolescent LB mice. Indeed, transient ablation of microglia from P13-21, in normally developing mice caused sex-specific behavioral and synaptic abnormalities similar to those observed in adolescent LB mice. Furthermore, chemogenetic activation of microglia during the same period reversed the microglial-mediated phagocytic deficits at P17 and restored normal contextual fear conditioning and synaptic connectivity in adolescent LB male mice. Our data support an additional contribution of astrocytes in the sex-specific effects of LB, with increased expression of the membrane receptor MEGF10 and enhanced synaptic engulfment in hippocampal astrocytes of 17-day-old LB females, but not in LB male littermates. This finding suggests a potential compensatory mechanism that may explain the relative resilience of LB females. Collectively, these studies highlight a novel role for glial cells in mediating sex-specific hippocampal deficits in a mouse model of early-life adversity.

3.
Dev Psychobiol ; 65(6): e22405, 2023 09.
Article in English | MEDLINE | ID: mdl-37607894

ABSTRACT

Early adversity can change educational, cognitive, and mental health outcomes. However, the neural processes through which early adversity exerts these effects remain largely unknown. We used generative network modeling of the mouse connectome to test whether unpredictable postnatal stress shifts the constraints that govern the organization of the structural connectome. A model that trades off the wiring cost of long-distance connections with topological homophily (i.e., links between regions with shared neighbors) generated simulations that successfully replicate the rodent connectome. The imposition of early life adversity shifted the best-performing parameter combinations toward zero, heightening the stochastic nature of the generative process. Put simply, unpredictable postnatal stress changes the economic constraints that reproduce rodent connectome organization, introducing greater randomness into the development of the simulations. While this change may constrain the development of cognitive abilities, it could also reflect an adaptive mechanism that facilitates effective responses to future challenges.


Subject(s)
Brain , Cognition , Animals , Mice
4.
Brain Behav Immun ; 107: 16-31, 2023 01.
Article in English | MEDLINE | ID: mdl-36174883

ABSTRACT

Early life adversity impairs normal hippocampal function and connectivity in various mammalian species, including humans and rodents. According to the 'cumulative model' the number of early adversities can be summed up to determine the risk for developing psychopathology later in life. In contrast, the 'dimensional model' argues that 'Deprivation' and 'Threat' impact different developmental processes that should not be added in determining clinical outcomes. Here we examine these predictions in male and female mice exposed to a single adversity - limited bedding (LB) - versus mice exposed to multiple adversities - unpredictable postnatal stress (UPS) - focusing on microglia-mediated synaptic pruning in the developing hippocampus. Exposure to both LB and UPS reduced the ramification of microglia, impaired their ability to phagocytose synaptic material in vivo and ex vivo, and decreased expression of TREM2. Abnormal phagocytic activity was associated with increased spine density in CA1 pyramidal neurons that was seen in 17-day-old groups and persisted in peri-pubescent 29-day-old LB and UPS mice. Exposure to LB caused more severe impairment in microglial ramification and synaptic engulfment compared to UPS, outcomes that were accompanied by a UPS-specific increase in the expression of several genes implicated in synaptic pruning. We propose that despite being a single stressor, LB represents a more severe form of early deprivation, and that appropriate levels of hippocampal stimulation during the second and third weeks of life are necessary to support normal microglial ramification and synaptic pruning. Further, impaired synaptic pruning during this critical period of hippocampal development contributes to the abnormal hippocampal function and connectivity seen in UPS and LB later in life.


Subject(s)
Neuronal Plasticity , Stress, Psychological , Animals , Female , Male , Mice , Membrane Glycoproteins
5.
Bio Protoc ; 11(22): e4221, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34909442

ABSTRACT

Translational work in rodents elucidates basic mechanisms that drive complex behaviors relevant to psychiatric and neurological conditions. Nonetheless, numerous promising studies in rodents later fail in clinical trials, highlighting the need for improving the translational utility of preclinical studies in rodents. Imaging of small rodents provides an important strategy to address this challenge, as it enables a whole-brain unbiased search for structural and dynamic changes that can be directly compared to human imaging. The functional significance of structural changes identified using imaging can then be further investigated using molecular and genetic tools available for the mouse. Here, we describe a pipeline for unbiased search and characterization of structural changes and network properties, based on diffusion MRI data covering the entire mouse brain at an isotropic resolution of 100 µm. We first used unbiased whole-brain voxel-based analyses to identify volumetric and microstructural alterations in the brain of adult mice exposed to unpredictable postnatal stress (UPS), which is a mouse model of complex early life stress (ELS). Brain regions showing structural abnormalities were used as nodes to generate a grid for assessing structural connectivity and network properties based on graph theory. The technique described here can be broadly applied to understand brain connectivity in other mouse models of human disorders, as well as in genetically modified mouse strains. Graphic abstract: Pipeline for characterizing structural connectome in the mouse brain using diffusion magnetic resonance imaging. Scale bar = 1 mm.

7.
Front Neurosci ; 15: 657693, 2021.
Article in English | MEDLINE | ID: mdl-33897364

ABSTRACT

Early adversity (EA) impairs myelin development in a manner that persists later in life across diverse mammalian species including humans, non-human primates, and rodents. These observations, coupled with the highly conserved nature of myelin development suggest that animal models can provide important insights into the molecular mechanisms by which EA impairs myelin development later in life and the impact of these changes on network connectivity, cognition, and behavior. However, this area of translational research has received relatively little attention and no comprehensive review is currently available to address these issues. This is particularly important given some recent mechanistic studies in rodents and the availability of new agents to increase myelination. The goals of this review are to highlight the need for additional pre-clinical work in this area and to provide specific examples that demonstrate the potential of this work to generate novel therapeutic interventions that are highly needed.

8.
Transl Psychiatry ; 11(1): 231, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33879774

ABSTRACT

Exposure to early life stress (ELS) causes abnormal hippocampal development and functional deficits in rodents and humans, but no meta-analysis has been used yet to quantify the effects of different rodent models of ELS on hippocampal-dependent memory. We searched PubMed and Web of Science for publications that assessed the effects of handling, maternal separation (MS), and limited bedding and nesting (LBN) on performance in the Morris water maze (MWM), novel object recognition (NOR), and contextual fear conditioning (CFC). Forty-five studies met inclusion criteria (n = 451-763 rodents per test) and were used to calculate standardized mean differences (Hedge's g) and to assess heterogeneity, publication bias, and the moderating effects of sex and species (rats vs. mice). We found significantly lower heterogeneity in LBN compared to handling and MS with no consistent effects of sex or species across the three paradigms. LBN and MS caused similar cognitive deficits in tasks that rely heavily on the dorsal hippocampus, such as MWM and NOR, and were significantly different compared to the improved performance seen in rodents exposed to handling. In the CFC task, which relies more on the ventral hippocampus, all three paradigms showed reduced freezing with moderate effect sizes that were not statistically different. These findings demonstrate the utility of using meta-analysis to quantify outcomes in a large number of inconsistent preclinical studies and highlight the need to further investigate the possibility that handling causes different alterations in the dorsal hippocampus but similar outcomes in the ventral hippocampus when compared to MS and LBN.


Subject(s)
Hippocampus , Maternal Deprivation , Memory , Animals , Mice , Rats , Stress, Psychological
9.
Elife ; 92020 12 01.
Article in English | MEDLINE | ID: mdl-33259286

ABSTRACT

It is currently unclear whether early life stress (ELS) affects males and females differently. However, a growing body of work has shown that sex moderates responses to stress and injury, with important insights into sex-specific mechanisms provided by work in rodents. Unfortunately, most of the ELS studies in rodents were conducted only in males, a bias that is particularly notable in translational work that has used human imaging. Here we examine the effects of unpredictable postnatal stress (UPS), a mouse model of complex ELS, using high resolution diffusion magnetic resonance imaging. We show that UPS induces several neuroanatomical alterations that were seen in both sexes and resemble those reported in humans. In contrast, exposure to UPS induced fronto-limbic hyper-connectivity in males, but either no change or hypoconnectivity in females. Moderated-mediation analysis found that these sex-specific changes are likely to alter contextual freezing behavior in males but not in females.


Subject(s)
Frontal Lobe/pathology , Learning , Limbic System/pathology , Neural Pathways/pathology , Sex Characteristics , Stress, Physiological , Animals , Anisotropy , Anxiety , Behavior, Animal , Body Weight , Diffusion Magnetic Resonance Imaging , Female , Frontal Lobe/physiopathology , Limbic System/physiopathology , Male , Mice , Mice, Inbred BALB C , Models, Neurological , Nesting Behavior , Neural Pathways/growth & development , Organ Size
10.
Transl Psychiatry ; 10(1): 174, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483128

ABSTRACT

The mechanisms by which childhood maltreatment increases anxiety is unclear, but a propensity for increased defensive behavior in rodent models of early life stress (ELS) suggests that work in rodents may clarify important mechanistic details about this association. A key challenge in studying the effects of ELS on defensive behavior in rodents is the plethora of inconsistent results. This is particularly prominent with the maternal separation (MS) literature, one of the most commonly used ELS models in rodents. To address this issue we conducted a systematic review and meta-analysis, examining the effects of MS on exploratory-defensive behavior in mice and rats using the open field test (OFT) and the elevated plus maze (EPM). This search yielded a total of 49 studies, 24 assessing the effect of MS on behavior in the EPM, 11 tested behavior in the OFT, and 14 studies provided data on both tasks. MS was associated with increased defensive behavior in rats (EPM: Hedge's g = -0.48, p = 0.02; OFT: Hedge's g = -0.33, p = 0.05), effect sizes that are consistent with the anxiogenic effect of early adversity reported in humans. In contrast, MS did not alter exploratory behavior in mice (EPM: Hedge's g = -0.04, p = 0.75; OFT: Hedge's g = -0.03, p = 0.8). There was a considerable amount of heterogeneity between studies likely related to the lack of standardization of the MS protocol. Together, these findings suggest important differences in the ability of MS to alter circuits that regulate defensive behaviors in mice and rats.


Subject(s)
Maternal Deprivation , Rodentia , Animals , Anxiety , Anxiety Disorders , Behavior, Animal , Exploratory Behavior , Mice , Rats
11.
Front Neurosci ; 14: 618593, 2020.
Article in English | MEDLINE | ID: mdl-33390898

ABSTRACT

Large number of promising preclinical psychiatric studies in rodents later fail in clinical trials, raising concerns about the efficacy of this approach to generate novel pharmacological interventions. In this mini-review we argue that over-reliance on behavioral tests that are brief and highly sensitive to external factors play a critical role in this failure and propose that automated home-cage monitoring offers several advantages that will increase the translational utility of preclinical psychiatric research in rodents. We describe three of the most commonly used approaches for automated home cage monitoring in rodents [e.g., operant wall systems (OWS), computerized visual systems (CVS), and automatic motion sensors (AMS)] and review several commercially available systems that integrate the different approaches. Specific examples that demonstrate the advantages of automated home-cage monitoring over traditional tests of anxiety, depression, cognition, and addiction-like behaviors are highlighted. We conclude with recommendations on how to further expand this promising line of preclinical research.

12.
J Child Psychol Psychiatry ; 61(6): 732-734, 2020 06.
Article in English | MEDLINE | ID: mdl-31828779

ABSTRACT

Childhood maltreatment (CM) is a heterogeneous group of childhood adversities that can range from different forms of abuse (physical, sexual, emotional) or neglect (physical, emotional, cognitive), to severe bullying by peers. With an annual estimated cost of $500 billion in the United States alone, CM is recognized as one of the most significant risk factors for a range of psychiatric and medical conditions (White and Kaffman, 2019). Further, rates of numerous psychiatric, neurological, and medical conditions differ significantly between males and females (Gillies and McArthur, 2010), inspiring decades of research on how sex moderates consequences of CM (Gershon et al., 2008). Although vulnerability to CM has been reported to vary by sex, very few findings have been consistent across studies. Moreover, most work to date has focused on how sex alters the frequencies of different psychopathologies in maltreated individuals, with little attention to whether different developmental processes may underlie these psychopathologies in males and females (White and Kaffman, 2019). The primary goal of this editorial was to advocate for more effective research strategies to address these questions. We first examine the rationale for studying sex as an important moderator of consequences of CM, briefly summarize some of the most consistent clinical findings, and discuss the implications of sex in treatment response. We then highlight important obstacles that contribute to the large number of inconsistent findings and make five recommendations on how to move forward.


Subject(s)
Adverse Childhood Experiences/psychology , Child Abuse/psychology , Child Abuse/therapy , Adolescent , Bullying , Child , Female , Humans , Male , Peer Group , Sex Factors , United States
13.
Front Neurosci ; 13: 1082, 2019.
Article in English | MEDLINE | ID: mdl-31680821

ABSTRACT

Stress has pronounced effects on the brain, and thus behavioral outputs. This is particularly true when the stress occurs during vulnerable points in development. A review of the clinical literature regarding the moderating effects of sex on psychopathology in individuals exposed to childhood maltreatment (CM) is complicated by a host of variables that are difficult to quantify and control in clinical settings. As a result, the precise role of sex in moderating the consequences of CM remains elusive. In this review, we explore the rationale for studying this important question and their implications for treatment. We examine this issue using the threat/deprivation conceptual framework and highlight a growing body of work demonstrating important sex differences in human studies and in animal models of early life stress (ELS). The challenges and obstacles for effectively studying this question are reviewed and are followed by recommendations on how to move forward at the clinical and preclinical settings. We hope that this review will help inspire additional studies on this important topic.

14.
Methods Mol Biol ; 2011: 3-22, 2019.
Article in English | MEDLINE | ID: mdl-31273690

ABSTRACT

Most large pharmaceutical companies have downscaled or closed their clinical neuroscience research programs in response to the low clinical success rate for drugs that showed tremendous promise in animal experiments intended to model psychiatric pathophysiology. These failures have raised serious concerns about the role of preclinical research in the identification and evaluation of new pharmacotherapies for psychiatry. In the absence of a comprehensive understanding of the neurobiology of psychiatric disorders, the task of developing "animal models" seems elusive. The purpose of this review is to highlight emerging strategies to enhance the utility of preclinical research in the drug development process. We address this issue by reviewing how advances in neuroscience, coupled with new conceptual approaches, have recently revolutionized the way we can diagnose and treat common psychiatric conditions. We discuss the implications of these new tools for modeling psychiatric conditions in animals and advocate for the use of systematic reviews of preclinical work as a prerequisite for conducting psychiatric clinical trials. We believe that work in animals is essential for elucidating human psychopathology and that improving the predictive validity of animal models is necessary for developing more effective interventions for mental illness.


Subject(s)
Biotechnology , Central Nervous System Agents/pharmacology , Drug Development , Drug Evaluation, Preclinical , Translational Research, Biomedical , Animal Experimentation , Animals , Biomarkers , Central Nervous System Agents/therapeutic use , Clinical Trials as Topic , Drug Development/methods , Drug Evaluation, Preclinical/methods , Humans , Mental Disorders/diagnosis , Mental Disorders/drug therapy , Mental Disorders/etiology , Molecular Targeted Therapy , Translational Research, Biomedical/methods , Treatment Outcome
15.
Transl Psychiatry ; 8(1): 49, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29463821

ABSTRACT

Childhood maltreatment is associated with a wide range of psychopathologies including anxiety that emerge in childhood and in many cases persist in adulthood. Increased amygdala activation in response to threat and abnormal amygdala connectivity with frontolimbic brain regions, such as the hippocampus and the prefrontal cortex, are some of the most consistent findings seen in individuals exposed to childhood maltreatment. The underlying mechanisms responsible for these changes are difficult to study in humans but can be elucidated using animal models of early-life stress. Such studies are especially powerful in the mouse where precise control of the genetic background and the stress paradigm can be coupled with resting-state fMRI (rsfMRI) to map abnormal connectivity in circuits that regulate anxiety. To address this issue we first compared the effects of two models of early-life stress, limited bedding (LB) and unpredictable postnatal stress (UPS), on anxiety-like behavior in juvenile and adult mice. We found that UPS, but not LB, causes a robust increase in anxiety in juvenile and adult male mice. Next, we used rsfMRI to compare frontolimbic connectivity in control and UPS adult male mice. We found increased amygdala-prefrontal cortex and amygdala-hippocampus connectivity in UPS. The strength of the amygdala-hippocampal and amygdala-prefrontal cortex connectivity was highly correlated with anxiety-like behavior in the open-field test and elevated plus maze. These findings are the first to link hyperconnectivity in frontolimbic circuits and increased anxiety in a mouse model of early-life stress, allowing for more mechanistic understanding of parallel findings in humans.


Subject(s)
Amygdala/physiopathology , Anxiety/physiopathology , Behavior, Animal/physiology , Connectome/methods , Hippocampus/physiopathology , Nerve Net/physiopathology , Prefrontal Cortex/physiopathology , Stress, Psychological/physiopathology , Age Factors , Amygdala/diagnostic imaging , Animals , Anxiety/diagnostic imaging , Hippocampus/diagnostic imaging , Magnetic Resonance Imaging , Male , Mice , Nerve Net/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Stress, Psychological/diagnostic imaging
16.
Brain Behav Immun ; 69: 18-27, 2018 03.
Article in English | MEDLINE | ID: mdl-28625767

ABSTRACT

The role of the innate immune system in mediating some of the consequences of childhood abuse and neglect has received increasing attention in recent years. Most of the work to date has focused on the role that neuroinflammation plays in the long-term adult psychiatric and medical complications associated with childhood maltreatment. The effects of stress-induced neuroinflammation on neurodevelopment have received little attention because until recently this issue has not been studied systematically in animal models of early life stress. The primary goal of this review is to explore the hypothesis that elevated corticosterone during the first weeks of life in mice exposed to brief daily separation (BDS), which is a mouse model of early life stress, disrupts microglial function during a critical period of brain development. We propose that perturbations of microglial function lead to abnormal maturation of several neuronal and non-neuronal cellular processes resulting in behavioral abnormalities that emerge during the juvenile period and persist in adulthood. Here, we highlight recent work demonstrating that exposure to BDS alters microglial cell number, morphology, phagocytic activity, and gene expression in the developing hippocampus in a manner that extends into the juvenile period. These changes in microglial function are associated with abnormalities in developmental processes mediated by microglia including synaptogenesis, synaptic pruning, axonal growth, and myelination. We examine the changes in microglial gene expression in the context of previous work demonstrating developmental and behavioral abnormalities in BDS mice and in other animal models of early life stress. The possible utility of these findings for developing novel PET imaging to assess microglial function in individuals exposed to childhood maltreatment is also discussed.


Subject(s)
Brain/metabolism , Corticosterone/metabolism , Microglia/metabolism , Stress, Physiological/physiology , Stress, Psychological/metabolism , Animals , Brain/pathology , Disease Models, Animal , Mice , Microglia/pathology , Neuronal Plasticity/physiology , Stress, Psychological/pathology
17.
Brain Behav Immun ; 57: 79-93, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27301858

ABSTRACT

Children exposed to abuse or neglect show abnormal hippocampal development and similar findings have been reported in rodent models. Using brief daily separation (BDS), a mouse model of early life stress, we previously showed that exposure to BDS impairs hippocampal function in adulthood and perturbs synaptic maturation, synaptic pruning, axonal growth and myelination in the developing hippocampus. Given that microglia are involved in these developmental processes, we tested whether BDS impairs microglial activity in the hippocampus of 14 (during BDS) and 28-day old mice (one week after BDS). We found that BDS increased the density and altered the morphology of microglia in the hippocampus of 14-day old pups, effects that were no longer present on postnatal day (PND) 28. Despite the normal cell number and morphology seen at PND28, the molecular signature of hippocampal microglia, assessed using the NanoString immune panel, was altered at both ages. We showed that during normal hippocampal development, microglia undergo significant changes between PND14 and PND28, including reduced cell density, decreased ex vivo phagocytic activity, and an increase in the expression of genes involved in inflammation and cell migration. However, microglia harvested from the hippocampus of 28-day old BDS mice showed an increase in phagocytic activity and reduced expression of genes that normally increase across development. Promoter analysis indicated that alteration in the transcriptional activity of PU.1, Creb1, Sp1, and RelA accounted for most of the transcriptional changes seen during normal microglia development and for most of the BDS-induced changes at PND14 and PND28. These findings are the first to demonstrate that early life stress dysregulates microglial function in the developing hippocampus and to identify key transcription factors that are likely to mediate these changes.


Subject(s)
Hippocampus/growth & development , Hippocampus/metabolism , Microglia/metabolism , Stress, Psychological/metabolism , Age Factors , Animals , Maternal Deprivation , Mice , Mice, Inbred BALB C
18.
Dev Neurosci ; 37(6): 476-88, 2015.
Article in English | MEDLINE | ID: mdl-26068561

ABSTRACT

Conflicting reports are available with regard to the effects of childhood abuse and neglect on hippocampal function in children. While earlier imaging studies and some animal work have suggested that the effects of early-life stress (ELS) manifest only in adulthood, more recent studies have documented impaired hippocampal function in maltreated children and adolescents. Additional work using animal modes is needed to clarify the effects of ELS on hippocampal development. In this regard, genomic, proteomic, and molecular tools uniquely available in the mouse make it a particularly attractive model system to study this issue. However, very little work has been done so far to characterize the effects of ELS on hippocampal development in the mouse. To address this issue, we examined the effects of brief daily separation (BDS), a mouse model of ELS that impairs hippocampal-dependent memory in adulthood, on hippocampal development in 28-day-old juvenile mice. This age was chosen because it corresponds to the developmental period in which human imaging studies have revealed abnormal hippocampal development in maltreated children. Exposure to BDS caused a significant decrease in the total protein content of synaptosomes harvested from the hippocampus of 28-day-old male and female mice, suggesting that BDS impairs normal synaptic development in the juvenile hippocampus. Using a novel liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM) assay, we found decreased expression of many synaptic proteins, as well as proteins involved in axonal growth, myelination, and mitochondrial activity. Golgi staining in 28-day-old BDS mice showed an increase in the number of immature and abnormally shaped spines and a decrease in the number of mature spines in CA1 neurons, consistent with defects in synaptic maturation and synaptic pruning at this age. In 14-day-old pups, BDS deceased the expression of proteins involved in axonal growth and myelination, but did not affect the total protein content of synaptosomes harvested from the hippocampus, or protein levels of other synaptic markers. These results add two important findings to previous work in the field. First, our findings demonstrate that in 28-day-old juvenile mice, BDS impairs synaptic maturation and reduces the expression of proteins that are necessary for axonal growth, myelination, and mitochondrial function. Second, the results suggest a sequential model in which BDS impairs normal axonal growth and myelination before it disrupts synaptic maturation in the juvenile hippocampus.


Subject(s)
Hippocampus/growth & development , Hippocampus/pathology , Stress, Psychological/physiopathology , Animals , Blotting, Western , Chromatography, Liquid , Disease Models, Animal , Female , Male , Mass Spectrometry , Maternal Deprivation , Mice , Mice, Inbred BALB C
20.
PLoS One ; 9(12): e115283, 2014.
Article in English | MEDLINE | ID: mdl-25517398

ABSTRACT

Children that are exposed to abuse or neglect show abnormal hippocampal function. However, the developmental mechanisms by which early life stress (ELS) impairs normal hippocampal development have not been elucidated. Here we propose that exposure to ELS blunts normal hippocampal growth by inhibiting the availability of ribosomal RNA (rRNA). In support of this hypothesis, we show that the normal mouse hippocampus undergoes a growth-spurt during the second week of life, followed by a gradual decrease in DNA and RNA content that persists into adulthood. This developmental pattern is associated with accelerated ribosomal RNA (rRNA) synthesis during the second week of life, followed by a gradual decline in rRNA levels that continue into adulthood. Levels of DNA methylation at the ribosomal DNA (rDNA) promoter are lower during the second week of life compared to earlier development or adulthood. Exposure to brief daily separation (BDS), a mouse model of early life stress, increased DNA methylation at the ribosomal DNA promoter, decreased rRNA levels, and blunted hippocampal growth during the second week of life. Exposure to acute (3 hrs) maternal separation decreased rRNA and increased DNA methylation at the rDNA proximal promoter, suggesting that exposure to stress early in life can rapidly regulate the availability of rRNA levels in the developing hippocampus. Given the critical role that rRNA plays in supporting normal growth and development, these findings suggest a novel molecular mechanism to explain how stress early in life impairs hippocampus development in the mouse.


Subject(s)
DNA Methylation , DNA, Ribosomal/genetics , Hippocampus/cytology , Hippocampus/physiopathology , Maternal Deprivation , RNA, Ribosomal/genetics , Stress, Psychological , Animals , Female , Male , Mice , Mice, Inbred BALB C , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...