Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plants (Basel) ; 13(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39124253

ABSTRACT

Since 2012, growers of coriander, Coriandrum sativum L., in Israel have been suffering from summer wilting that can result in entire fields collapsing. The current study aimed to determine the cause of the phenomenon and find a genetic solution to the problem. The disease was reproduced in a growth chamber using naturally-infested soil from a commercial field. Wilt became apparent within two weeks, and after ten weeks, all plants died compared to plants in sterilized soil from the same source. Fusarium oxysporum was isolated from infected plants, and Koch's postulates were completed. Sequence analysis of the Elongation Factor (EF1α) encoding gene of the pathogen had a 99.54% match to F. oxysporum f. sp. coriandrii. Several coriander varieties were screened for resistance or tolerance to the disease. In four independent experiments, only the cultivar 'Smadi' showed high tolerance, while other genotypes were susceptible. In a trial in a naturally infested field, the cultivar 'Smadi' outperformed the commercial cultivar 'Blair'. 'Smadi' provides a cropping solution to many Israeli farmers, yet this winter cultivar bolts early in the summer. There is a further need to characterize the tolerance mechanism and inheritance for informed breeding of late-bolting Fusarium-resistant coriander.

2.
Physiol Plant ; 175(1): e13870, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36724166

ABSTRACT

Sweet basil, Ocimum basilicum L., is an important culinary herb grown worldwide. Although basil is green, many landraces, breeding lines, and exotic cultivars have purple stems and flowers. This anthocyanin pigmentation is unacceptable in traditional Italian basil used for Pesto sauce production. In the current study, we aimed to resolve the genetics that underlines the different colors. We used the recently published sweet basil genome to map quantitative trait loci (QTL) for flower and stem color in a bi-parental F2 population. It was found that the pigmentation is governed by a single QTL, harboring an anthocyanidin synthase (ANS) gene (EC 1.14.20.4). Further analysis revealed that the basil genome harbors two homeologous ANS genes, each carrying a loss-of-function mutation. ObANS1 carries a single base pair insertion resulting in a frameshift, and ObANS2 carries a missense mutation within the active site. In the purple-flower parent, ANS1 is functional, and ANS2 carries a nonsense mutation. The functionality of the ObANS1 active allele was validated by complementation assay in an Arabidopsis ANS mutant. Moreover, we have restored the functionality of the missense-mutated ObANS2 using site-directed activation. We found that the non-functional alleles were expressed to similar levels as the functional allele, suggesting polyploids invest futile effort in expressing non-functional genes, offsetting their advantageous redundancy. This work demonstrated the usefulness of the genomics and genetics of basil to understand the basic mechanism of metabolic traits and raise fundamental questions in polyploid plant biology.


Subject(s)
Ocimum basilicum , Oxygenases/genetics , Phenotype , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL