Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 10: 1339, 2019.
Article in English | MEDLINE | ID: mdl-31316473

ABSTRACT

Earthworms play important roles in no-till cropping systems by redistributing crop residue to lower soil horizons, providing macropores for root growth, increasing water infiltration, enhancing soil quality and organic matter, and stimulating nitrogen cycling. The soil impacted by earthworm activity, including burrows, casts, and middens, is termed the drilosphere. The objective of this study was to determine the effect of earthworms on soil microbial community composition in the drilosphere at different landscape slope positions. Soil cores (50 cm depth) were extracted from three landscape locations (top, middle, and bottom slope positions) on a sloping aspect of a no-till wheat farm. Soil was sampled at the bottom of the soil core from inside multiple earthworm (Lumbricus terrestris) channels (drilosphere) and from adjacent bulk soil. Bacterial communities were characterized for 16S rRNA gene diversity using high-throughput sequencing and functional denitrifier gene abundance (nirK, nirS, and nosZ) by quantitative PCR. Bacterial communities were structured primarily by the landscape slope position of the soil core followed by source (bulk versus drilosphere soil), with a significant interaction between core position and source. The families AKIW874, Chitinophagaceae, and Comamonadaceae and the genera Amycolatopsis, Caulobacter, Nocardioides, and Variovorax were more abundant in the drilosphere compared to the bulk soil. Most of the individual bacterial taxa enriched in the drilosphere versus bulk soil were members of Actinobacteria, including Micrococcales, Gaiellaceae, Solirubrobacterales, and Mycobacterium. In general, the greatest differences in communities were observed in comparisons of the top and bottom slope positions in which the bottom slope communities had significantly greater richness, diversity, and denitrifier abundance than the top slope position. Populations of denitrifiers (i.e., ratio of nirK+nirS to 16S rRNA) were more abundant in earthworm-impacted soils and there was a significant impact of L. terrestris on soil community composition which was observed only in the top landscape position. There were significant correlations between the abundance of nirK and nirS and taxa within Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi, suggesting a broad diversity of denitrifying bacteria. Earthworms influence the soil microbial communities, but the impact depends on the slope location in a variable landscape, which likely reflects different soil characteristics.

2.
FEMS Microbiol Ecol ; 94(7)2018 07 01.
Article in English | MEDLINE | ID: mdl-29800123

ABSTRACT

Soil edaphic characteristics are major drivers of fungal communities, but there is a lack of information on how communities vary with soil depth and landscape position in no-till cropping systems. Eastern Washington is dominated by dryland wheat grown on a highly variable landscape with steep, rolling hills. High-throughput sequencing of fungal ITS1 amplicons was used to characterize fungal communities across soil depth profiles (0 to 100 cm from the soil surface) among distinct landscape positions and aspects across a no-till wheat field. Fungal communities were highly stratified with soil depth, where deeper depths harbored distinct fungal taxa and more variable, less diverse fungal communities. Fungal communities from deep soils harbored a greater portion of taxa inferred to have pathotrophic or symbiotrophic in addition to saprotrophic lifestyles. Co-occurrence networks of fungal taxa became smaller and denser as soil depth increased. In contrast, differences between fungal communities from north-facing and south-facing slopes were relatively minor, suggesting that plant host, tillage, and fertilizer may be stronger drivers of fungal communities than landscape position.


Subject(s)
Fungi/classification , Fungi/genetics , Soil Microbiology , Triticum/microbiology , Biodiversity , DNA, Fungal/genetics , DNA, Intergenic/genetics , Fungi/isolation & purification , High-Throughput Nucleotide Sequencing , Mycobiome , Soil , Washington
SELECTION OF CITATIONS
SEARCH DETAIL
...