Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 7: 10267, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26758808

ABSTRACT

Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.

2.
J Clim ; 29(19): 7127-7143, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-32753779

ABSTRACT

An atmospheric-water-budget-related phase space is constructed with the tendency terms related to dynamical convergence (QCON ≡ -Q∇ · V) and moisture advection (QADV ≡ -V · ∇Q) in the water budget equation. Over the tropical oceans, QCON accounts for large-scale dynamical conditions related to conditional instability, and QADV accounts for conditions related to lower-tropospheric moisture gradient. Two reanalysis products [MERRA and ERA-Interim (ERAi)] are used to calculate QCON and QADV. Using the phase space as a reference frame, the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure (CTP) and cloud optical depth (COD) are used to evaluate simulated clouds in the GISS-E2 general circulation model. In regimes of divergence over the tropical oceans, moist advection yields frequent high- to midlevel medium-thickness to thick clouds associated with moderate stratiform precipitation, while dry advection yields low-level thin clouds associated with shallow convection with lowered cloud tops. In regimes with convergence, moist and dry advection modulate the relative abundance of high-level thick clouds and low-level thin to medium-thickness clouds. GISS-E2 qualitatively reproduces the cloud property dependence on moisture budget tendencies in regimes of convergence but with larger COD compared to MODIS. Low-level thick clouds in GISS-E2 are the most frequent in regimes of near-zero convergence and moist advection instead of those of large-scale divergence. Compared to the Global Precipitation Climatology Project product, MERRA, ERAi, and GISS-E2 have more rain in regimes with deep convection and less rain in regimes with shallow convection.

3.
Astrobiology ; 6(6): 881-900, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17155887

ABSTRACT

Spatially and spectrally resolved models were used to explore the observational sensitivity to changes in atmospheric and surface properties and the detectability of surface biosignatures in the globally averaged spectra and light-curves of the Earth. Compared with previous efforts to characterize the Earth using disk-averaged models, a more comprehensive and realistic treatment of the surface and atmosphere was taken into account here. Our results are presented as a function of viewing geometry and phases at both visible/near-infrared (0.5-1.7 microm) and mid-infrared (5-25 microm) wavelength ranges, applicable to the proposed NASA-Terrestrial Planet Finder visible coronagraph and mid-infrared interferometer and to the ESADarwin mission architectures. Clouds can change the thermal emission by as much as 50% compared with the cloud-free case and increase the visible albedo by up to 500% for completely overcast cases at the dichotomy phase. Depending on the observed phase and their distribution and type, clouds can also significantly alter the spectral shape. Moreover, clouds impact the detectability of surface biosignatures in the visible wavelength range. Modeling the disk-averaged sensitivity to the "red-edge," a distinctive spectral signature of vegetation, showed that Earth's land vegetation could be seen in disk-averaged spectra, even with cloud cover, when the signal was averaged over the daily time scale. We found that vegetation is more readily discriminated from clouds at dichotomy (50% illumination) rather than at full phase. The detectability of phytoplankton was also explored, but was found to be more difficult to detect in the disk-average than land vegetation.


Subject(s)
Earth, Planet , Light , Spectroscopy, Near-Infrared , Spectrum Analysis , Atmosphere , Exobiology , Models, Theoretical
4.
Appl Opt ; 42(12): 2140-54, 2003 Apr 20.
Article in English | MEDLINE | ID: mdl-12716156

ABSTRACT

Infrared transmission spectra were recorded by the Jet Propulsion Laboratory MkIV interferometer during flights aboard the NASA DC-8 aircraft as part of the Airborne Arctic Stratospheric Expedition II (AASE II) mission in the early months of 1992. In our research, we infer the properties of the stratospheric aerosols from these spectra. The instrument employs two different detectors, a HgCdTe photoconductor for 650-1850 cm(-1) and an InSb photodiode for 1850-5650 cm(-1), to simultaneously record the solar intensity throughout the mid-infrared. These spectra have been used to retrieve the concentrations of a large number of gases, including chlorofluorocarbons, NOy species, O3, and ozone-depleting gases. We demonstrate how the residual continua spectra, obtained after accounting for the absorbing gases, can be used to obtain information about the stratospheric aerosols. Infrared extinction spectra are calculated for a range of modeled aerosol size distributions and compositions with Mie theory and fitted to the measured residual spectra. By varying the size distribution parameters and sulfate weight percent, we obtain the microphysical properties of the aerosols that best fit the observations. The effective radius of the aerosols is found to be between 0.4 and 0.6 microm, consistent with that derived from a large number of instruments in this post-Pinatubo period. We demonstrate how different parts of the spectral range can be used to constrain the range of possible values of this size parameter and show how the broad spectral bandpass of the MkIV instrument presents a great advantage for retrieval ofboth aerosol size a nd composition over instruments with a more limited spectral range. The aerosol composition that provides the best fit to the measured spectra is a 70-75% sulfuric acid solution, in good agreement with that obtained from thermodynamic considerations.

5.
Appl Opt ; 41(15): 2768-80, 2002 May 20.
Article in English | MEDLINE | ID: mdl-12027163

ABSTRACT

High-resolution infrared nongas absorption spectra derived from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are analyzed for evidence of the presence of cirrus clouds. Several nonspherical ice extinction models based on realistic size distributions and crystal habits along with a stratospheric sulfate aerosol model are fit to the spectra, and comparisons are made with different model combinations. Nonspherical ice models often fit observed transmission spectra better than a spherical Mie ice model, and some discrimination among nonspherical models is noted. The ATMOS lines of sight for eight occultations are superimposed on coincident geostationary satellite infrared imagery, and brightness temperatures along the lines of sight are compared with retrieved vertical temperature profiles. With these comparisons, studies of two cases of clear sky, three cases of opaque cirrus, and three cases of patchy cirrus are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...