Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pathog Dis ; 79(6)2021 07 28.
Article in English | MEDLINE | ID: mdl-34279609

ABSTRACT

The effects of the bcsE gene and BcsE protein on bacterial physiology and pathogenicity in SalmonellaTyphimurium and Salmonella Group C1 were investigated. It was observed that biofilm and pellicle formation did not occur in the bcsE gene mutants of wild-type strains. Besides, the 'rdar' (red, dry, rough) biofilm morphotype in wild-type strains changed significantly in the mutants. In terms of the bcsE gene, the swimming and swarming motility in mutant strains showed a dramatic increase compared to the wild-type strains. The Salmonella bcsE gene was cloned into Escherichia coli BL21, and the his-tagged protein produced in this strain was purified to obtain polyclonal antibodies in BALB/c mice. The antibodies were showed labeled antigen specificity to the BscE protein. As a result of immunization and systemic persistence tests carried out with BALB/c mice, BscE protein was determined to trigger high levels of humoral and cellular responses (Th1 cytokine production, IgG2a/IgG1 > 1). Systemic persistence in the liver and spleen samples decreased by 99.99% and 100% in the bcsE mutant strains. Finally, invasion abilities on HT-29 epithelial cells of wild-type strains were utterly disappeared in their bcsE gene mutant strains.


Subject(s)
Bacterial Proteins/physiology , Salmonella Infections/immunology , Salmonella Infections/microbiology , Salmonella/physiology , Salmonella/pathogenicity , Animals , Biofilms , Cloning, Molecular , DNA, Bacterial , Escherichia coli/genetics , HT29 Cells , Humans , Membrane Proteins/physiology , Mice , Mice, Inbred BALB C , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Sequence Deletion , Virulence
2.
Int Arch Allergy Immunol ; 182(8): 679-689, 2021.
Article in English | MEDLINE | ID: mdl-33752210

ABSTRACT

BACKGROUND: Obese asthma is a complex syndrome with certain phenotypes that differ in children and adults. There is no clear evidence regarding the presence of additive or synergistic pathological interaction between obesity and asthma in children. OBJECTIVES: Our aim was to demonstrate the interaction of obesity and asthma in children in terms of airway and systemic inflammation by a controlled observational study. METHODS: Four groups were formed: asthma obese (AO), asthma nonobese (ANO), non-AO (NAO), nonasthma nonobese (NANO). Spirometry test, fractional exhaled nitric oxide (FeNO) test, skin prick test, serum inflammatory biomarkers (C-reactive protein, C3, C4, adiponectin, leptin, resistin, periostin, YKL-40, Type 1, and Type 2 cytokines) were conducted and evaluated in all participants. Sputum inflammatory cells (sputum eosinophils and neutrophils) were evaluated in patients who could produce induced sputum and obesity-asthma interactions were determined. RESULTS: A total of 153 participants aged 6-18 years were included in the study, including the AO group (n = 46), the ANO group (n = 45), the NAO group (n = 30), and the NANO group (n = 32). IL-4 (p < 0.001), IL-5 (p < 0.001), IL-13 (p < 0.001), resistin (p < 0.001), and YKL-40 (p < 0.001) levels were higher in patients with asthma independent of obesity. The lowest adiponectin level was found in the AO group and obesity-asthma interaction was detected (p < 0.001). Sputum eosinophilia (p < 0.01), sputum neutrophilia (p < 0.01), and FeNO levels (p = 0.07) were higher in asthmatic patients independent of obesity. In the group with paucigranulocytic inflammation, resistin and YKL-40 levels were significantly lower than in the group without paucigranulocytic inflammation (p < 0.01). CONCLUSION: No interaction was found between obesity and asthma in terms of airway inflammation. Interaction between obesity and asthma was shown in terms of adiponectin level and resistin/adiponectin and leptin/adiponectin ratios. It was found that serum YKL-40 and resistin levels could be associated with airway inflammation.


Subject(s)
Asthma/etiology , Inflammation/etiology , Pediatric Obesity/complications , Adolescent , Age Factors , Asthma/diagnosis , Asthma/metabolism , Biomarkers , Child , Child, Preschool , Disease Susceptibility , Humans , Inflammation/metabolism , Inflammation/pathology , Organ Specificity , Pediatric Obesity/metabolism , Phenotype , Syndrome
3.
Mol Cancer Ther ; 18(11): 2146-2157, 2019 11.
Article in English | MEDLINE | ID: mdl-31439713

ABSTRACT

Activation of the PI3K/Akt/mTOR pathway is an important signaling mechanism involved in the development and the progression of liver cancer stem cell (LCSC) population during acquired Sorafenib resistance in advanced hepatocellular carcinoma (HCC). Therefore, identification of novel therapeutic targets involving this pathway and acting on LCSCs is highly essential. Here, we analyzed the bioactivities and the molecular pathways involved in the action of small-molecule PI3K/Akt/mTOR pathway inhibitors in comparison with Sorafenib, DNA intercalators, and DAPT (CSC inhibitor) on CD133/EpCAM-positive LCSCs. Sorafenib and DNA intercalators lead to the enrichment of LCSCs, whereas Rapamycin and DAPT significantly reduced CD133/EpCAM positivity. Sequential treatment with Rapamycin followed by Sorafenib decreased the ratio of LCSCs as well as their sphere formation capacity, as opposed to Sorafenib alone. Under the stress of the inhibitors, differential expression analysis of 770 cancer pathway genes using network-based systems biology approach singled out IL8 expression association with LCSCs. Furthermore, IL8 secretion and LCSC enrichment ratio was also positively correlated. Following IL8 inhibition with its receptor inhibitor Reparixin or siRNA knockdown, LCSC features of HCC cells were repressed, and sensitivity of cells to Sorafenib increased significantly. Furthermore, inflammatory cytokines (IL8, IL1ß, and IL11) were also upregulated upon treatment with HCC-approved kinase inhibitors Sorafenib and Regorafenib. Hence, chemotherapeutic stress alters inflammatory cytokine gene expression in favor of hepatic CSC population survival. Autocrine IL8 signaling is identified as a critical event, and its inhibition provides a promising complimentary therapeutic approach for the prevention of LCSC population enrichment.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Liver Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Neoplastic Stem Cells/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology , Sorafenib/pharmacology , Sulfonamides/pharmacology , TOR Serine-Threonine Kinases/metabolism
4.
J Allergy Clin Immunol ; 142(1): 246-257, 2018 07.
Article in English | MEDLINE | ID: mdl-29155101

ABSTRACT

BACKGROUND: Pathological inflammatory syndromes of unknown etiology are commonly observed in ataxia telangiectasia (AT) and Artemis deficiency. Similar inflammatory manifestations also exist in patients with STING-associated vasculopathy in infancy (SAVI). OBJECTIVE: We sought to test the hypothesis that the inflammation-associated manifestations observed in patients with AT and Artemis deficiency stem from increased type I IFN signature leading to neutrophil-mediated pathological damage. METHODS: Cytokine/protein signatures were determined by ELISA, cytometric bead array, or quantitative PCR. Stat1 phosphorylation levels were determined by flow cytometry. DNA species accumulating in the cytosol of patients' cells were quantified microscopically and flow cytometrically. Propensity of isolated polymorhonuclear granulocytes to form neutrophil extracellular traps (NETs) was determined using fluorescence microscopy and picogreen assay. Neutrophil reactive oxygen species levels and mitochondrial stress were assayed using fluorogenic probes, microscopy, and flow cytometry. RESULTS: Type I and III IFN signatures were elevated in plasma and peripheral blood cells of patients with AT, Artemis deficiency, and SAVI. Chronic IFN production stemmed from the accumulation of DNA in the cytoplasm of AT and Artemis-deficient cells. Neutrophils isolated from patients spontaneously produced NETs and displayed indicators of oxidative and mitochondrial stress, supportive of their NETotic tendencies. A similar phenomenon was also observed in neutrophils from healthy controls exposed to patient plasma samples or exogeneous IFN-α. CONCLUSIONS: Type I IFN-mediated neutrophil activation and NET formation may contribute to inflammatory manifestations observed in patients with AT, Artemis deficiency, and SAVI. Thus, neutrophils represent a promising target to manage inflammatory syndromes in diseases with active type I IFN signature.


Subject(s)
Ataxia Telangiectasia/immunology , Extracellular Traps/immunology , Immunologic Deficiency Syndromes/immunology , Interferon Type I/immunology , Ataxia Telangiectasia/pathology , DNA-Binding Proteins , Endonucleases/deficiency , Endonucleases/immunology , Humans , Immunologic Deficiency Syndromes/genetics , Membrane Proteins/genetics , Neutrophil Activation , Neutrophils/immunology , Neutrophils/pathology , Nuclear Proteins/deficiency , Nuclear Proteins/immunology , Vasculitis/genetics , Vasculitis/immunology , Vasculitis/pathology
5.
J Extracell Vesicles ; 6(1): 1284449, 2017.
Article in English | MEDLINE | ID: mdl-28326169

ABSTRACT

Behçet's disease (BD) activity is characterised by sustained, over-exuberant immune activation, yet the underlying mechanisms leading to active BD state are poorly defined. Herein, we show that the human cathelicidin derived antimicrobial peptide LL37 associates with and directs plasma extracellular vesicles (EV) to immune cells, thereby leading to enhanced immune activation aggravating BD pathology. Notably, disease activity was correlated with elevated levels of circulating LL37 and EV plasma concentration. Stimulation of healthy PBMC with active BD patient EVs induced heightened IL1ß, IFNα, IL6 and IP10 secretion compared to healthy and inactive BD EVs. Remarkably, when mixed with LL37, healthy plasma-EVs triggered a robust immune activation replicating the pathology inducing properties of BD EVs. The findings of this study could be of clinical interest in the management of BD, implicating LL37/EV association as one of the major contributors of BD pathogenesis. Abbreviations: BD: Behçet's disease; EV: extracellular vesicle; BB: binding buffer; AnV: annexin V; autologEV: autologous extracellular vesicles; alloEV: allogeneic extracellular vesicles.

6.
PLoS One ; 12(2): e0171003, 2017.
Article in English | MEDLINE | ID: mdl-28170444

ABSTRACT

Reduced immune activation or immunosuppression is seen in patients withneurological diseases. Urinary and respiratory infections mainly manifested as septicemia and pneumonia are the most frequent complications following spinal cord injuries and they account for the majority of deaths. The underlying reason of these losses is believed to arise due to impaired immune responses to pathogens. Here, we hypothesized that susceptibility to infections of chronic spinal cord injured (SCI) patients might be due to impairment in recognition of pathogen associated molecular patterns and subsequently declining innate and adaptive immune responses that lead to immune dysfunction. We tested our hypothesis on healthy and chronic SCI patients with a level of injury above T-6. Donor PBMCs were isolated and stimulated with different toll like receptor ligands and T-cell inducers aiming to investigate whether chronic SCI patients display differential immune activation to multiple innate and adaptive immune cell stimulants. We demonstrate that SCI patients' B-cell and plasmacytoid dendritic cells retain their functionality in response to TLR7 and TLR9 ligand stimulation as they secreted similar levels of IL6 and IFNα. The immune dysfunction is not probably due to impaired T-cell function, since neither CD4+ T-cell dependent IFNγ producing cell number nor IL10 producing regulatory T-cells resulted different outcomes in response to PMA-Ionomycin and PHA-LPS stimulation, respectively. We showed that TLR7 dependent IFNγ and IP10 levels and TLR9 mediated APC function reduced substantially in SCI patients compared to healthy subjects. More importantly, IP10 producing monocytes were significantly fewer compared to healthy subjects in response to TLR7 and TLR9 stimulation of SCI PBMCs. When taken together this work implicated that these defects could contribute to persistent complications due to increased susceptibility to infections of chronic SCI patients.


Subject(s)
Immunity , Immunomodulation , Spinal Cord Injuries/immunology , Spinal Cord Injuries/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/metabolism , Biomarkers , Case-Control Studies , Chronic Disease , Cross-Sectional Studies , Cytokines/metabolism , Humans , Leukocyte Count , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Ligands , Lymphocyte Activation , Spinal Cord Injuries/pathology , Spinal Cord Injuries/rehabilitation
7.
Eur J Immunol ; 45(4): 1170-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25581346

ABSTRACT

Recognition of pathogen-derived nucleic acids by immune cells is critical for the activation of protective innate immune responses. Bacterial cyclic dinucleotides (CDNs) are small nucleic acids that are directly recognized by the cytosolic DNA sensor STING (stimulator of IFN genes), initiating a response characterized by proinflammatory cytokine and type I IFN production. Strategies to improve the immune stimulatory activities of CDNs can further their potential for clinical development. Here, we demonstrate that a simple complex of cylic-di-GMP with a cell-penetrating peptide enhances both cellular delivery and biological activity of the cyclic-di-GMP in murine splenocytes. Furthermore, our findings establish that activation of the TLR-dependent and TLR-independent DNA recognition pathways through combined use of CpG oligonucleotide (ODN) and CDN results in synergistic activity, augmenting cytokine production (IFN-α/ß, IL-6, TNF-α, IP-10), costimulatory molecule upregulation (MHC class II, CD86), and antigen-specific humoral and cellular immunity. Results presented herein indicate that 3'3'-cGAMP, a recently identified bacterial CDN, is a superior stimulator of IFN genes ligand than cyclic-di-GMP in human PBMCs. Collectively, these findings suggest that the immune-stimulatory properties of CDNs can be augmented through peptide complexation or synergistic use with CpG oligonucleotide and may be of interest for the development of CDN-based immunotherapeutic agents.


Subject(s)
Cell-Penetrating Peptides/pharmacology , Cyclic GMP/analogs & derivatives , Immunity, Innate/drug effects , Nucleotides, Cyclic/pharmacology , Oligodeoxyribonucleotides/pharmacology , Adjuvants, Immunologic/pharmacology , Animals , CpG Islands , Cyclic GMP/chemistry , Cyclic GMP/pharmacology , Cytokines/biosynthesis , Humans , Interferon Type I/biosynthesis , Membrane Proteins , Mice , Mice, Inbred C57BL , Peptides/chemistry , Spleen/cytology , Spleen/drug effects , Tumor Cells, Cultured
8.
Biomaterials ; 32(18): 4275-82, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21459434

ABSTRACT

Immunostimulatory properties of mushroom derived polysaccharides (PS) as stand-alone agents were tested. Next, PS were nanocomplexed with polyI:C (pIC) to yield stable nanoparticles around 200 nm in size evidenced by atomic force microscopy and dynamic light scattering analyses. PSs were selectively engaged by cells expressing TLR2 and initiated NFκB dependent signaling cascade leading to a Th1-biased cytokine/chemokine secretion in addition to bactericidal nitric oxide (NO) production from macrophages. Moreover, cells treated with nanoparticles led to synergistic IL6, production and upregulation of TNFα, MIP3α, IFNγ and IP10 transcript expression. In mice, PS-Ovalbumin-pIC formulation surpassed anti-OVA IgG responses when compared to either PS-OVA or pIC-OVA mediated immunity. Our results revealed that signal transduction initiated both by TLR2 and TLR3 via co-delivery of pIC by PS in nanoparticle depot delivery system is an effective immunization strategy. The present work implicate that the PS and nucleic acid based nanoparticle approach along with protein antigens can be harnessed to prevent infectious diseases.


Subject(s)
Immunization , Interferon Inducers/immunology , Nanoparticles/chemistry , Poly I-C/immunology , Polysaccharides/immunology , Adjuvants, Immunologic , Agaricales/chemistry , Animals , Cell Line , Dose-Response Relationship, Drug , Female , Humans , Interleukin-16/immunology , Interleukin-18/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microscopy, Atomic Force , Nitric Oxide/metabolism , Toll-Like Receptors/immunology , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...