Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Photonics ; 10(1): 111-115, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36691425

ABSTRACT

Broadband emission in the terahertz spectral region is a prerequisite for applications such as spectroscopy or white light sources. Appropriate signal powers and a compact design are advantageous for this use. A technology which meets these requirements are terahertz quantum cascade lasers. These electrically pumped, on-chip semiconductor lasers provide high output powers and the freedom of tailoring their emission wavelength by bandstructure engineering. By combining multiple active region designs emitting at different wavelengths in a single structure, one can obtain broadband emission from a single device. Here, we present a heterogeneous terahertz quantum cascade laser consisting of five individual active regions based on a three-well, LO-phonon depopulation design. The devices lase in pulsed and continuous-wave operation and emit in a spectral range from 1.9 to 4.5 THz, covering a bandwidth of 1.37 octaves. The use of the three-well design, which was optimized for high temperature operation, leads to a maximum operating temperature in the pulsed operation of 143 K.

2.
Opt Express ; 29(15): 23611-23621, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34614624

ABSTRACT

Artificial neural networks are capable of fitting highly non-linear and complex systems. Such complicated systems can be found everywhere in nature, including the non-linear interaction between optical modes in laser resonators. In this work, we demonstrate artificial neural networks trained to model these complex interactions in the cavity of a Quantum Cascade Random Laser. The neural networks are able to predict modulation schemes for desired laser spectra in real-time. This radically novel approach makes it possible to adapt spectra to individual requirements without the need for lengthy and costly simulation and fabrication iterations.

3.
ACS Photonics ; 5(11): 4687-4693, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-31037249

ABSTRACT

Terahertz quantum cascade lasers (QCLs) are excellent coherent light sources, but are still limited to an operating temperature below 200 K. To tackle this, we analyze the influence of the barrier height for the identical three-well terahertz QCL layer sequence by comparing different aluminum concentrations (x = 0.12-0.24) in the GaAs/Al x Ga1-x As material system, and then we present an optimized structure based on these findings. Electron injection and extraction mechanisms as well as LO-phonon depopulation processes play crucial roles in the efficient operation of these lasers and are investigated in this study. Experimental results of the barrier height study show the highest operating temperature of 186.5 K for the structure with 21% aluminum barriers, with a record k B T max/ℏω value of 1.36 for a three-well active region design. An optimized heterostructure with 21% aluminum concentration and reduced cavity waveguide losses is designed and enables a record operating temperature of 196 K for a 3.8 THz QCL.

4.
ACS Photonics ; 4(4): 957-962, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28470028

ABSTRACT

We report on high-power terahertz quantum cascade lasers based on low effective electron mass InGaAs/InAlAs semiconductor heterostructures with excellent reproducibility. Growth-related asymmetries in the form of interface roughness and dopant migration play a crucial role in this material system. These bias polarity dependent phenomena are studied using a nominally symmetric active region resulting in a preferential electron transport in the growth direction. A structure based on a three-well optical phonon depletion scheme was optimized for this bias direction. Depending on the sheet doping density, the performance of this structure shows a trade-off between high maximum operating temperature and high output power. While the highest operating temperature of 155 K is observed for a moderate sheet doping density of 2 × 1010 cm-2, the highest peak output power of 151 mW is found for 7.3 × 1010 cm-2. Furthermore, by abutting a hyperhemispherical GaAs lens to a device with the highest doping level a record output power of 587 mW is achieved for double-metal waveguide structures.

SELECTION OF CITATIONS
SEARCH DETAIL