Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 580: 358-366, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27979626

ABSTRACT

Life Cycle Assessment (LCA) is a widely used tool to assess environmental sustainability of products. The LCA should optimally cover the most important environmental impact categories such as climate change, eutrophication and biodiversity. However, impacts on biodiversity are seldom included in LCAs due to methodological limitations and lack of appropriate characterization factors. When assessing organic agricultural products the omission of biodiversity in LCA is problematic, because organic systems are characterized by higher species richness at field level compared to the conventional systems. Thus, there is a need for characterization factors to estimate land use impacts on biodiversity in life cycle assessment that are able to distinguish between organic and conventional agricultural land use that can be used to supplement and validate the few currently suggested characterization factors. Based on a unique dataset derived from field recording of plant species diversity in farmland across six European countries, the present study provides new midpoint occupation Characterization Factors (CF) expressing the Potentially Disappeared Fraction (PDF) to estimate land use impacts on biodiversity in the 'Temperate Broadleaf and Mixed Forest' biome in Europe. The method is based on calculation of plant species on randomly selected test sites in the biome and enables the calculation of characterization factors that are sensitive to particular types of management. While species richness differs between countries, the calculated CFs are able to distinguish between different land use types (pastures (monocotyledons or mixed), arable land and hedges) and management practices (organic or conventional production systems) across countries. The new occupation CFs can be used to supplement or validate the few current CF's and can be applied in LCAs of agricultural products to assess land use impacts on species richness in the 'Temperate Broadleaf and Mixed Forest' biome.


Subject(s)
Biodiversity , Conservation of Natural Resources , Farms , Forests , Agriculture , Climate Change , Europe
2.
Ecology ; 97(6): 1625, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27859220

ABSTRACT

Farmland is a major land cover type in Europe and Africa and provides habitat for numerous species. The severe decline in farmland biodiversity of the last decades has been attributed to changes in farming practices, and organic and low-input farming are assumed to mitigate detrimental effects of agricultural intensification on biodiversity. Since the farm enterprise is the primary unit of agricultural decision making, management-related effects at the field scale need to be assessed at the farm level. Therefore, in this study, data were collected on habitat characteristics, vascular plant, earthworm, spider, and bee communities and on the corresponding agricultural management in 237 farms in 13 European and two African regions. In 15 environmental and agricultural homogeneous regions, 6-20 farms with the same farm type (e.g., arable crops, grassland, or specific permanent crops) were selected. If available, an equal number of organic and non-organic farms were randomly selected. Alternatively, farms were sampled along a gradient of management intensity. For all selected farms, the entire farmed area was mapped, which resulted in total in the mapping of 11 338 units attributed to 194 standardized habitat types, provided together with additional descriptors. On each farm, one site per available habitat type was randomly selected for species diversity investigations. Species were sampled on 2115 sites and identified to the species level by expert taxonomists. Species lists and abundance estimates are provided for each site and sampling date (one date for plants and earthworms, three dates for spiders and bees). In addition, farmers provided information about their management practices in face-to-face interviews following a standardized questionnaire. Farm management indicators for each farm are available (e.g., nitrogen input, pesticide applications, or energy input). Analyses revealed a positive effect of unproductive areas and a negative effect of intensive management on biodiversity. Communities of the four taxonomic groups strongly differed in their response to habitat characteristics, agricultural management, and regional circumstances. The data has potential for further insights into interactions of farmland biodiversity and agricultural management at site, farm, and regional scale.


Subject(s)
Agriculture/methods , Biodiversity , Farms , Africa , Animals , Bees , Crops, Agricultural , Ecosystem , Environmental Monitoring , Europe
3.
Nat Commun ; 5: 4151, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24958283

ABSTRACT

Organic farming is promoted to reduce environmental impacts of agriculture, but surprisingly little is known about its effects at the farm level, the primary unit of decision making. Here we report the effects of organic farming on species diversity at the field, farm and regional levels by sampling plants, earthworms, spiders and bees in 1470 fields of 205 randomly selected organic and nonorganic farms in twelve European and African regions. Species richness is, on average, 10.5% higher in organic than nonorganic production fields, with highest gains in intensive arable fields (around +45%). Gains to species richness are partly caused by higher organism abundance and are common in plants and bees but intermittent in earthworms and spiders. Average gains are marginal +4.6% at the farm and +3.1% at the regional level, even in intensive arable regions. Additional, targeted measures are therefore needed to fulfil the commitment of organic farming to benefit farmland biodiversity.


Subject(s)
Bees/growth & development , Biodiversity , Oligochaeta/growth & development , Organic Agriculture , Animals , Bees/classification , Environment , Oligochaeta/classification , Plants/classification , Spiders/classification , Spiders/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...