Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Children (Basel) ; 11(4)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38671655

ABSTRACT

Until recently, no disease-specific health-related quality of life (HRQoL) questionnaire existed for pediatric traumatic brain injuries (TBIs). In this revalidation study, the psychometric properties and the validity of the 35-item QOLIBRI-KID/ADO questionnaire in its final German version were examined in 300 children and adolescents. It is the first self-reported TBI-specific tool for measuring pediatric HRQoL in individuals aged between 8 and 17 years. The six-factor model fits the data adequately. The questionnaire's internal consistency was excellent for the total score and satisfactory to excellent for the scale scores. Intraclass correlations indicated good test-retest reliability, and the measure's construct validity was supported by the overlap between the QOLBRI-KID/ADO and the PedsQL, which measures generic HRQoL. The discriminant validity tests showed that older children and girls reported a significantly lower HRQoL than comparison groups, and this was also true of children who were anxious or depressed, or who suffered from post-concussion symptoms, replicating the results of the questionnaire's first developmental study. Our results suggest that the QOLIBRI-KID/ADO is a reliable and valid multidimensional tool that can be used together with the adult version in clinical contexts and research to measure disease-specific HRQoL after pediatric TBI throughout a person's life. This may help improve care, treatment, daily functioning, and HRQoL after TBI.

2.
Article in English | MEDLINE | ID: mdl-38211896

ABSTRACT

OBJECTIVE: Severe congenital aortic valve pathology in the growing patient remains a challenging clinical scenario. Bicuspidization of the diseased aortic valve has proven to be a promising repair technique with acceptable durability. However, most understanding of the procedure is empirical and retrospective. This work seeks to design the optimal gross morphology associated with surgical bicuspidization with simulations based on the hypothesis that modifications to the free edge length cause or relieve stenosis. METHODS: Model bicuspid valves were constructed with varying free edge lengths and gross morphology. Fluid-structure interaction simulations were conducted in a single patient-specific model geometry. The models were evaluated for primary targets of stenosis and regurgitation. Secondary targets were assessed and included qualitative hemodynamics, geometric height, effective height, orifice area, and billow. RESULTS: Stenosis decreased with increasing free edge length and was pronounced with free edge length less than or equal to 1.3 times the annular diameter d. With free edge length 1.5d or greater, no stenosis occurred. All models were free of regurgitation. Substantial billow occurred with free edge length 1.7d or greater. CONCLUSIONS: Free edge length 1.5d or greater was required to avoid aortic stenosis in simulations. Cases with free edge length 1.7d or greater showed excessive billow and other changes in gross morphology. Cases with free edge length 1.5d to 1.6d have a total free edge length approximately equal to the annular circumference and appeared optimal. These effects should be studied in vitro and in animal studies.

3.
ArXiv ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37808095

ABSTRACT

OBJECTIVE: Severe congenital aortic valve pathology in the growing patient remains a challenging clinical scenario. Bicuspidization of the diseased aortic valve has proven to be a promising repair technique with acceptable durability. However, most understanding of the procedure is empirical and retrospective. This work seeks to design the optimal gross morphology associated with surgical bicuspidization with simulations, based on the hypothesis that modifications to the free edge length cause or relieve stenosis. METHODS: Model bicuspid valves were constructed with varying free edge lengths and gross morphology. Fluid-structure interaction simulations were conducted in a single patient-specific model geometry. The models were evaluated for primary targets of stenosis and regurgitation. Secondary targets were assessed and included qualitative hemodynamics, geometric height, effective height, orifice area and prolapse. RESULTS: Stenosis decreased with increasing free edge length and was pronounced with free edge length less than or equal to 1.3 times the annular diameter d. With free edge length 1.5d or greater, no stenosis occurred. All models were free of regurgitation. Substantial prolapse occurred with free edge length greater than or equal to 1.7d. CONCLUSIONS: Free edge length greater than or equal to 1.5d was required to avoid aortic stenosis in simulations. Cases with free edge length greater than or equal to 1.7d showed excessive prolapse and other changes in gross morphology. Cases with free edge length 1.5-1.6d have a total free edge length approximately equal to the annular circumference and appeared optimal. These effects should be studied in vitro and in animal studies.

4.
iScience ; 26(8): 107361, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37554445

ABSTRACT

Individuals with Down syndrome (DS) clinically manifest severe respiratory illnesses; however, there is a paucity of data on how DS influences homeostatic physiology of lung airway, and its reactive responses to pulmonary pathogens. We generated well-differentiated ciliated airway epithelia using tracheas from wild-type and Dp(16)1/Yey mice in vitro, and discovered that Dp(16)1/Yey epithelia have significantly lower abundance of ciliated cells, an altered ciliary beating profile, and reduced mucociliary transport. Interestingly, both sets of differentiated epithelia released similar quantities of viral particles after infection with influenza A virus (IAV). However, RNA-sequencing and proteomic analyses revealed an immune hyperreactive phenotype particularly for monocyte-recruiting chemokines in Dp(16)1/Yey epithelia. Importantly, when we challenged mice in vivo with IAV, we observed immune hyper-responsiveness in Dp(16)1/Yey mice, evidenced by higher quantities of lung airway infiltrated monocytes, and elevated levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid. Our findings illuminate mechanisms underlying DS-mediated pathophysiological changes in airway epithelium.

5.
Ann Biomed Eng ; 51(10): 2267-2288, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37378877

ABSTRACT

The immersed boundary (IB) method is a mathematical framework for fluid-structure interaction problems (FSI) that was originally developed to simulate flows around heart valves. Direct comparison of FSI simulations around heart valves against experimental data is challenging, however, due to the difficulty of performing robust and effective simulations, the complications of modeling a specific physical experiment, and the need to acquire experimental data that is directly comparable to simulation data. Such comparators are a necessary precursor for further formal validation studies of FSI simulations involving heart valves. In this work, we performed physical experiments of flow through a pulmonary valve in an in vitro pulse duplicator, and measured the corresponding velocity field using 4D flow MRI (4-dimensional flow magnetic resonance imaging). We constructed a computer model of this pulmonary artery setup, including modeling valve geometry and material properties via a technique called design-based elasticity, and simulated flow through it with the IB method. The simulated flow fields showed excellent qualitative agreement with experiments, excellent agreement on integral metrics, and reasonable relative error in the entire flow domain and on slices of interest. These results illustrate how to construct a computational model of a physical experiment for use as a comparator.


Subject(s)
Hemodynamics , Models, Cardiovascular , Heart Valves/diagnostic imaging , Heart Rate , Computer Simulation , Magnetic Resonance Imaging , Aortic Valve
6.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902090

ABSTRACT

Estrogen-dependent breast cancers rely on a constant supply of estrogens and expression of estrogen receptors. Local biosynthesis, by aromatase in breast adipose fibroblasts (BAFs), is their most important source for estrogens. Triple-negative breast cancers (TNBC) rely on other growth-promoting signals, including those from the Wnt pathway. In this study, we explored the hypothesis that Wnt signaling alters the proliferation of BAFs, and is involved in regulation of aromatase expression in BAFs. Conditioned medium (CM) from TNBC cells and WNT3a consistently increased BAF growth, and reduced aromatase activity up to 90%, by suppression of the aromatase promoter I.3/II region. Database searches identified three putative Wnt-responsive elements (WREs) in the aromatase promoter I.3/II. In luciferase reporter gene assays, promoter I.3/II activity was inhibited by overexpression of full-length T-cell factor (TCF)-4 in 3T3-L1 preadipocytes, which served as a model for BAFs. Full-length lymphoid enhancer-binding factor (LEF)-1 increased the transcriptional activity. However, TCF-4 binding to WRE1 in the aromatase promoter, was lost after WNT3a stimulation in immunoprecipitation-based in vitro DNA-binding assays, and in chromatin immunoprecipitation (ChIP). In vitro DNA-binding assays, ChIP, and Western blotting revealed a WNT3a-dependent switch of nuclear LEF-1 isoforms towards a truncated variant, whereas ß-catenin levels remained unchanged. This LEF-1 variant revealed dominant negative properties, and most likely recruited enzymes involved in heterochromatin formation. In addition, WNT3a induced the replacement of TCF-4 by the truncated LEF-1 variant, on WRE1 of the aromatase promoter I.3/II. The mechanism described here may be responsible for the loss of aromatase expression predominantly associated with TNBC. Tumors with (strong) expression of Wnt ligands actively suppress aromatase expression in BAFs. Consequently a reduced estrogen supply could favor the growth of estrogen-independent tumor cells, which consequently would make estrogen receptors dispensable. In summary, canonical Wnt signaling within (cancerous) breast tissue may be a major factor controlling local estrogen synthesis and action.


Subject(s)
Adipose Tissue , Aromatase , Triple Negative Breast Neoplasms , Wnt3A Protein , Humans , Aromatase/genetics , Aromatase/metabolism , beta Catenin/metabolism , DNA/chemistry , Estrogens/metabolism , Fibroblasts/metabolism , Receptors, Estrogen/metabolism , Triple Negative Breast Neoplasms/metabolism , Wnt3A Protein/metabolism , Adipose Tissue/metabolism
7.
Wiley Interdiscip Rev Cogn Sci ; 14(3): e1627, 2023.
Article in English | MEDLINE | ID: mdl-36223919

ABSTRACT

In healthy adults, autobiographical memories (AMs) evoked by music appear to have unique cognitive characteristics that set them apart from AMs evoked by other cues. If this is the case, we might expect music cues to alleviate AM deficits in clinical disorders. This systematic review examines music-evoked autobiographical memories (MEAMs) in clinical populations, focusing on cognitive characteristics, and whether MEAMs differ from AMs evoked by other stimuli. We identified 15 studies featuring participants with Alzheimer's disease (AD), behavioral variant - Frontotemporal dementia (bv-FTD), acquired brain damage, and depression. We found that music evokes AMs in these disorders, and that familiar music was more likely to evoke AMs. Compared with healthy controls, AD participants had a relative advantage for MEAMs over picture-evoked AMs. People with damage to the medial prefrontal cortex showed preserved access to MEAMs in terms of frequency, but a relative disadvantage regarding the episodic richness for MEAMs, but not for memories cued by pictures, compared to controls. Participants with bv-FTD had fewer AMs evoked after both music and pictures than healthy controls. Across conditions, MEAMs were generally specific and retrieved fast, suggesting little retrieval effort. MEAMs were also positive, except in depression, where as many negative as positive AMs were produced. These findings suggest several underlying cognitive and affective mechanisms of MEAMs, including anxiety reduction, increased fluency, music-evoked emotions, reminiscence, and involuntary retrieval, and that these might be moderated by musical abilities and memory for music. In conclusion, MEAMs appear to be relatively well preserved, especially in AD. This article is categorized under: Psychology > Memory.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Memory, Episodic , Music , Adult , Humans , Music/psychology , Mental Recall/physiology , Alzheimer Disease/psychology , Cognition
8.
J Med Device ; 16(3): 031009, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35646225

ABSTRACT

Annuloplasty ring choice and design are critical to the long-term efficacy of mitral valve (MV) repair. DynaRing is a selectively compliant annuloplasty ring composed of varying stiffness elastomer segments, a shape-set nitinol core, and a cross diameter filament. The ring provides sufficient stiffness to stabilize a diseased annulus while allowing physiological annular dynamics. Moreover, adjusting elastomer properties provides a mechanism for effectively tuning key MV metrics to specific patients. We evaluate the ring embedded in porcine valves with an ex-vivo left heart simulator and perform a 150 million cycle fatigue test via a custom oscillatory system. We present a patient-specific design approach for determining ring parameters using a finite element model optimization and patient MRI data. Ex-vivo experiment results demonstrate that motion of DynaRing closely matches literature values for healthy annuli. Findings from the patient-specific optimization establish DynaRing's ability to adjust the anterior-posterior and intercommissural diameters and saddle height by up to 8.8%, 5.6%, 19.8%, respectively, and match a wide range of patient data.

9.
Ann Biomed Eng ; 50(9): 1053-1072, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35748961

ABSTRACT

Bicuspid aortic valve is the most common congenital heart defect, affecting 1-2% of the global population. Patients with bicuspid valves frequently develop dilation and aneurysms of the ascending aorta. Both hemodynamic and genetic factors are believed to contribute to dilation, yet the precise mechanism underlying this progression remains under debate. Controlled comparisons of hemodynamics in patients with different forms of bicuspid valve disease are challenging because of confounding factors, and simulations offer the opportunity for direct and systematic comparisons. Using fluid-structure interaction simulations, we simulate flows through multiple aortic valve models in a patient-specific geometry. The aortic geometry is based on a healthy patient with no known aortic or valvular disease, which allows us to isolate the hemodynamic consequences of changes to the valve alone. Four fully-passive, elastic model valves are studied: a tricuspid valve and bicuspid valves with fusion of the left- and right-, right- and non-, and non- and left-coronary cusps. The resulting tricuspid flow is relatively uniform, with little secondary or reverse flow, and little to no pressure gradient across the valve. The bicuspid cases show localized jets of forward flow, excess streamwise momentum, elevated secondary and reverse flow, and clinically significant levels of stenosis. Localized high flow rates correspond to locations of dilation observed in patients, with the location related to which valve cusps are fused. Thus, the simulations support the hypothesis that chronic exposure to high local flow contributes to localized dilation and aneurysm formation.


Subject(s)
Bicuspid Aortic Valve Disease , Heart Valve Diseases , Aorta , Aortic Valve , Hemodynamics , Humans
10.
Front Psychol ; 13: 787382, 2022.
Article in English | MEDLINE | ID: mdl-35391965

ABSTRACT

Unilateral spatial neglect (USN) is a disorder characterized by the failure to report, respond to, or orient toward the contralateral side of space to a brain lesion. Current assessment methods often fail to discover milder forms, cannot differentiate between unilateral spatial neglect subtypes and lack ecological validity. There is also a need for treatment methods that target subtypes. Immersive virtual reality (VR) systems in combination with eye-tracking (ET) have the potential to overcome these shortcomings, by providing more naturalistic environments and tasks, with sensitive and detailed measures. This systematic review examines the state of the art of research on these technologies as applied in the assessment and treatment of USN. As we found no studies that combined immersive VR and ET, we reviewed these approaches individually. The review of VR included seven articles, the ET review twelve. The reviews revealed promising results. (1) All included studies found significant group-level differences for several USN measures. In addition, several studies found asymmetric behavior in VR and ET tasks for patients who did not show signs of USN in conventional tests. Particularly promising features were multitasking in complex VR environments and detailed eye-movement analysis. (2) No VR and only a few ET studies attempted to differentiate USN subtypes, although the technologies appeared appropriate. One ET study grouped USN participants using individual heatmaps, and another differentiated between subtypes on drawing tasks. Regarding (3) ecological validity, although no studies tested the prognostic validity of their assessment methods, VR and ET studies utilized naturalistic tasks and stimuli reflecting everyday situations. Technological characteristics, such as the field of view and refresh rate of the head-mounted displays, could be improved, though, to improve ecological validity. We found (4) no studies that utilized VR or ET technologies for USN treatment up until the search date of the 26th of February 2020. In conclusion, VR-ET-based systems show great potential for USN assessment. VR-ET holds great promise for treatment, for example, by monitoring behavior and adapting and tailoring to the individual person's needs and abilities. Future research should consider developing methods for individual subtypes and differential diagnostics to inform individual treatment programs.

11.
STAR Protoc ; 3(4): 101885, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36595946

ABSTRACT

We recently developed a robotic human vaping mimetic real-time particle analyzer (HUMITIPAA) to evaluate the impact of change in chemical constituents and breathing profiles of electronic cigarettes (ECs) on potential pulmonary toxicity. Here, we describe the fabrication procedure of EC mouthpiece(s), establishment of sensor saturation curve, and preparation of e-liquid and vaping device(s) for testing. We further detail steps for HUMITIPAA preparation and connection setup, followed by data collection and processing. For complete details on the use and execution of this protocol, please refer to Kaiser et al. (2021).1.


Subject(s)
Electronic Nicotine Delivery Systems , Robotics , Vaping , Humans , Vaping/adverse effects , Biomimetics , Data Collection
13.
iScience ; 24(10): 103091, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34755082

ABSTRACT

Vitamin E acetate (VEA) has been strongly linked to outbreak of electronic cigarette (EC) or vaping product use-associated lung injury. How VEA leads to such an unexpected morbidity and mortality is currently unknown. To understand whether VEA impacts the disposition profile of inhaled particles, we created a biologically inspired robotic system that quantitatively analyzes submicron and microparticles generated from ECs in real-time while mimicking clinically relevant breathing and vaping topography exactly as happens in humans. We observed addition of even small quantities of VEA was sufficient to alter size distribution and significantly enhance total particles inhaled from ECs. Moreover, we demonstrated utility of our biomimetic robot for studying influence of nicotine and breathing profiles from obstructive and restrictive lung disorders. We anticipate our system will serve as a novel preclinical scientific research, decision-support tool when insight into toxicological impact of modifications in electronic nicotine delivery systems is desired.

14.
Biomech Model Mechanobiol ; 20(6): 2413-2435, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34549354

ABSTRACT

This paper presents a new method for modeling the mechanics of the aortic valve and simulates its interaction with blood. As much as possible, the model construction is based on first principles, but such that the model is consistent with experimental observations. We require that tension in the leaflets must support a pressure, then derive a system of partial differential equations governing its mechanical equilibrium. The solution to these differential equations is referred to as the predicted loaded configuration; it includes the loaded leaflet geometry, fiber orientations and tensions needed to support the prescribed load. From this configuration, we derive a reference configuration and constitutive law. In fluid-structure interaction simulations with the immersed boundary method, the model seals reliably under physiological pressures and opens freely over multiple cardiac cycles. Further, model closure is robust to extreme hypo- and hypertensive pressures. Then, exploiting the unique features of this model construction, we conduct experiments on reference configurations, constitutive laws and gross morphology. These experiments suggest the following conclusions: (1) The loaded geometry, tensions and tangent moduli primarily determine model function. (2) Alterations to the reference configuration have little effect if the predicted loaded configuration is identical. (3) The leaflets must have sufficiently nonlinear material response to function over a variety of pressures. (4) Valve performance is highly sensitive to free edge length and leaflet height. These conclusions suggest appropriate gross morphology and material properties for the design of prosthetic aortic valves. In future studies, our aortic valve modeling framework can be used with patient-specific models of vascular or cardiac flow.


Subject(s)
Aortic Valve/anatomy & histology , Aortic Valve/physiology , Models, Cardiovascular , Prosthesis Design , Rheology , Computer Simulation , Humans , Pressure
15.
Circ Heart Fail ; 14(7): e008034, 2021 07.
Article in English | MEDLINE | ID: mdl-34139862

ABSTRACT

BACKGROUND: Progressive aortic valve disease has remained a persistent cause of concern in patients with left ventricular assist devices. Aortic incompetence (AI) is a known predictor of both mortality and readmissions in this patient population and remains a challenging clinical problem. METHODS: Ten left ventricular assist device patients with de novo aortic regurgitation and 19 control left ventricular assist device patients were identified. Three-dimensional models of patients' aortas were created from their computed tomography scans, following which large-scale patient-specific computational fluid dynamics simulations were performed with physiologically accurate boundary conditions using the SimVascular flow solver. RESULTS: The spatial distributions of time-averaged wall shear stress and oscillatory shear index show no significant differences in the aortic root in patients with and without AI (mean difference, 0.67 dyne/cm2 [95% CI, -0.51 to 1.85]; P=0.23). Oscillatory shear index was also not significantly different between both groups of patients (mean difference, 0.03 [95% CI, -0.07 to 0.019]; P=0.22). The localized wall shear stress on the leaflet tips was significantly higher in the AI group than the non-AI group (1.62 versus 1.35 dyne/cm2; mean difference [95% CI, 0.15-0.39]; P<0.001), whereas oscillatory shear index was not significantly different between both groups (95% CI, -0.009 to 0.001; P=0.17). CONCLUSIONS: Computational fluid dynamics serves a unique role in studying the hemodynamic features in left ventricular assist device patients where 4-dimensional magnetic resonance imaging remains unfeasible. Contrary to the widely accepted notions of highly disturbed flow, in this study, we demonstrate that the aortic root is a region of relatively stagnant flow. We further identified localized hemodynamic features in the aortic root that challenge our understanding of how AI develops in this patient population.


Subject(s)
Aortic Valve Insufficiency/etiology , Aortic Valve/physiopathology , Heart Failure/etiology , Heart-Assist Devices/adverse effects , Aortic Valve Insufficiency/physiopathology , Computer Simulation , Heart Failure/physiopathology , Hemodynamics/physiology , Humans , Models, Cardiovascular , Stress, Mechanical , Ventricular Function, Left/physiology
16.
J Thorac Cardiovasc Surg ; 162(5): 1556-1563, 2021 Nov.
Article in English | MEDLINE | ID: mdl-32653292

ABSTRACT

OBJECTIVE: Aortic incompetence (AI) is observed to be accelerated in the continuous-flow left ventricular assist device (LVAD) population and is related to increased mortality. Using computational fluid dynamics (CFD), we investigated the hemodynamic conditions related to the orientation of the LVAD outflow in these patients. METHOD: We identified 10 patients with new aortic regurgitation, and 20 who did not, after LVAD implantation between 2009 and 2018. Three-dimensional models of patients' aortas were created from their computed tomography scans. The geometry of the LVAD outflow graft in relation to the aorta was quantified using azimuth angles (AA), polar angles (PAs), and distance from aortic root. The models were used to run CFD simulations, which calculated the pressures and wall shear stress (rWSS) exerted on the aortic root. RESULTS: The AA and PA were found to be similar. However, for combinations of high values of AA and low values of PA, there were no patients with AI. The distance from aortic root to the outflow graft was also smaller in patients who developed AI (3.39 ± 0.7 vs 4.07 ± 0.77 cm, P = .04). There was no significant difference in aortic root pressures in the 2 groups. The rWSS was greater in AI patients (4.60 ± 5.70 vs 2.37 ± 1.20 dyne/cm2, P < .001). Qualitatively, we observed a trend of greater perturbations, regions of high rWSS, and flow eddies in the AI group. CONCLUSIONS: Using CFD simulations, we demonstrated that patients who developed de novo AI have greater rWSS at the aortic root, and their outflow grafts were placed closer to the aortic roots than those patients without de novo AI.


Subject(s)
Aorta/physiopathology , Aortic Valve Insufficiency/etiology , Aortic Valve/physiopathology , Heart Failure/surgery , Heart-Assist Devices , Hemodynamics , Models, Cardiovascular , Patient-Specific Modeling , Prosthesis Implantation , Ventricular Function, Left , Adult , Aged , Aorta/diagnostic imaging , Aortic Valve/diagnostic imaging , Aortic Valve Insufficiency/diagnostic imaging , Aortic Valve Insufficiency/physiopathology , Aortography , Computed Tomography Angiography , Female , Heart Failure/diagnostic imaging , Heart Failure/physiopathology , Humans , Hydrodynamics , Male , Middle Aged , Predictive Value of Tests , Prosthesis Design , Prosthesis Implantation/adverse effects , Prosthesis Implantation/instrumentation , Retrospective Studies , Risk Factors , Stress, Mechanical , Treatment Outcome
17.
J Phys Chem A ; 124(20): 4062-4067, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32352296

ABSTRACT

Quasi-classical direct dynamics simulations, performed with the B3LYP-D3/cc-pVDZ electronic structure theory, are reported for vibrational relaxation of the three NH stretches of the -NH3+ group of protonated tryptophan (TrpH+), excited to the n = 1 local mode states. The intramolecular vibrational energy relaxation (IVR) rates determined for these states, from the simulations, are in good agreement with the experiment. In accordance with the experiment, IVR for the free NH stretch is slowest, with faster IVR for the remaining two NH stretches which have intermolecular couplings with an O atom and a benzenoid ring. For the free NH and the NH coupled to the benzenoid ring, there are beats (i.e., recurrences) in their relaxations versus time. For the free NH stretch, 50% of the population remained in n = 1 when the trajectories were terminated at 0.4 ps. IVR for the free NH stretch is substantially slower than for the CH stretch in benzene. The agreement found in this study between quasi-classical direct dynamics simulations and experiments indicates the possible applicability of this simulation method to larger biological molecules. Because IVR can drive or inhibit reactions, calculations of IVR time scales are of interest, for example, in unimolecular reactions, mode-specific chemistry, and many photochemical processes.

18.
Leukemia ; 34(8): 2206-2216, 2020 08.
Article in English | MEDLINE | ID: mdl-32214204

ABSTRACT

Molecular alterations within the hematopoietic system influence cellular longevity and development of age-related myeloid stem-cell disorders like acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). A reduced SIRT7-expression in aged murine hematopoietic stem cells (HSC) resulted in reduced longevity and increased proliferation. In this study we investigated age-related changes of SIRT7-expression in healthy humans and relevant pathomechanisms in AML and CML. SIRT7-expression in leukocytes of healthy people decreased in an age-dependent manner. Low SIRT7 mRNA levels were also detected in AML and CML patients. With positive treatment response, SIRT7-expression increased, but showed reduction when patients progressed or relapsed. Pharmacologic inhibition of driver mutations in AML (FLT3-ITD) or CML (BCR-ABL) also restored SIRT7 levels in cell lines and patient samples. Furthermore, SIRT7-expression increased with time during PMA-mediated monocyte differentiation of THP-1 cells. SIRT7-overexpression in THP-1 cells resulted in increased expression of differentiation markers. BCR-ABL, FLT3-ITD, and differentiation-associated SIRT7-expression in general were positively regulated by C/EBPα, -ß, and -ε binding to two different C/EBP-binding sites within the SIRT7 promoter. SIRT7 is important in human hematopoietic cell aging and longevity. It might act as tumor suppressor and could potentially serve as general biomarker for monitoring treatment response in myeloid stem-cell disorders.


Subject(s)
Healthy Aging , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology , Leukemia, Myeloid, Acute/etiology , Sirtuins/physiology , Adult , Age Factors , Aged , Aged, 80 and over , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cell Differentiation , Fusion Proteins, bcr-abl/antagonists & inhibitors , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Middle Aged , Mutation , Sirtuins/genetics , THP-1 Cells , fms-Like Tyrosine Kinase 3/genetics
19.
Cells ; 9(2)2020 02 12.
Article in English | MEDLINE | ID: mdl-32059481

ABSTRACT

Paracrine interactions between malignant estrogen receptor positive (ER+) breast cancer cells and breast adipose fibroblasts (BAFs) stimulate estrogen biosynthesis by aromatase in BAFs. In breast cancer, mainly the cAMP-responsive promoter I.3/II-region mediates excessive aromatase expression. A rare single nucleotide variant (SNV) in this promoter region, which caused 70% reduction in promoter activity, was utilized for the identification of novel regulators of aromatase expression. To this end, normal and mutant promoter activities were measured in luciferase reporter gene assays. DNA-binding proteins were captured by DNA-affinity and identified by mass spectrometry. The DNA binding of proteins was analyzed using electrophoretic mobility shift assays, immunoprecipitation-based in vitro binding assays and by chromatin immunoprecipitation in BAFs in vivo. Protein expression and parylation were analyzed by western blotting. Aromatase activities and RNA-expression were measured in BAFs. Functional consequences of poly (ADP-ribose) polymerase-1 (PARP-1) knock-out, rescue or overexpression, respectively, were analyzed in murine embryonic fibroblasts (MEFs) and the 3T3-L1 cell model. In summary, PARP-1 and histone H1 (H1) were identified as critical regulators of aromatase expression. PARP-1-binding to the SNV-region was crucial for aromatase promoter activation. PARP-1 parylated H1 and competed with H1 for DNA-binding, thereby inhibiting its gene silencing action. In MEFs (PARP-1 knock-out and wild-type) and BAFs, PARP-1-mediated induction of the aromatase promoter showed bi-phasic dose responses in overexpression and inhibitor experiments, respectively. The HDAC-inhibitors butyrate, panobinostat and selisistat enhanced promoter I.3/II-mediated gene expression dependent on PARP-1-activity. Forskolin stimulation of BAFs increased promoter I.3/II-occupancy by PARP-1, whereas SIRT-1 competed with PARP-1 for DNA binding but independently activated the promoter I.3/II. Consistently, the inhibition of both PARP-1 and SIRT-1 increased the NAD+/NADH-ratio in BAFs. This suggests that cellular NAD+/NADH ratios control the complex interactions of PARP-1, H1 and SIRT-1 and regulate the interplay of parylation and acetylation/de-acetylation events with low NAD+/NADH ratios (reverse Warburg effect), promoting PARP-1 activation and estrogen synthesis in BAFs. Therefore, PARP-1 inhibitors could be useful in the treatment of estrogen-dependent breast cancers.


Subject(s)
Aromatase/genetics , Histones/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Sirtuin 1/metabolism , Animals , Aromatase/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line , Colforsin/pharmacology , Estrogens/biosynthesis , Female , Gene Expression/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , NAD/metabolism , Oligonucleotides/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Promoter Regions, Genetic , Protein Binding , Protein Isoforms/metabolism
20.
RSC Adv ; 10(8): 4293-4299, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-35495270

ABSTRACT

Machine learning approaches have been successfully employed in many fields of computational chemistry and physics. However, atomistic simulations driven by machine-learned forces are still very challenging. Here we show that reactive self-sputtering from a beryllium surface can be simulated using neural network trained forces with an accuracy that rivals or exceeds other approaches. The key in machine learning from density functional theory calculations is a well-balanced and complete training set of energies and forces. We have implemented a refinement protocol that corrects the low extrapolation capabilities of neural networks by iteratively checking and improving the molecular dynamic simulations. The sputtering yield obtained for incident energies below 100 eV agrees perfectly with results from ab initio molecular dynamics simulations and compares well with earlier calculations based on pair potentials and bond-order potentials. This approach enables simulation times, sizes and statistics similar to what is accessible by conventional force fields and reaching beyond what is possible with direct ab initio molecular dynamics. We observed that a potential fitted to one surface, Be(0001), has to be augmented with training data for another surface, Be(011̄0), in order to be used for both.

SELECTION OF CITATIONS
SEARCH DETAIL
...