Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746244

ABSTRACT

Among evolved molecular mechanisms, cellular stress response to altered environmental conditions to promote survival is among the most fundamental. The presence of stress-induced unfolded or misfolded proteins and molecular registration of these events constitute early steps in cellular stress response. However, what stress-induced changes in protein conformations and protein-protein interactions within cells initiate stress response and how these features are recognized by cellular systems are questions that have remained difficult to answer, requiring new approaches. Quantitative in vivo chemical cross-linking coupled with mass spectrometry (qXL-MS) is an emerging technology that provides new insight on protein conformations, protein-protein interactions and how the interactome changes during perturbation within cells, organelles, and even tissues. In this work, qXL-MS and quantitative proteome analyses were applied to identify significant time-dependent interactome changes that occur prior to large-scale proteome abundance remodeling within cells subjected to heat stress. Interactome changes were identified within minutes of applied heat stress, including stress-induced changes in chaperone systems as expected due to altered functional demand. However, global analysis of all interactome changes revealed the largest significant enrichment in the gene ontology molecular function term of RNA binding. This group included more than 100 proteins among multiple components of protein synthesis machinery, including mRNA binding, spliceosomes, and ribosomes. These interactome data provide new conformational insight on the complex relationship that exists between transcription, translation and cellular stress response mechanisms. Moreover, stress-dependent interactome changes suggest that in addition to conformational stabilization of RNA-binding proteins, adaptation of RNA as interacting ligands offers an additional fitness benefit resultant from generally lower RNA thermal stability. As such, RNA ligands also serve as fundamental temperature sensors that signal stress through decreased conformational regulation of their protein partners as was observed in these interactome dynamics.

2.
Diagnostics (Basel) ; 10(12)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276497

ABSTRACT

A major hurdle for blood-based proteomic diagnostics is efficient transport of specimens from the collection site to the testing laboratory. Dried blood spots have shown utility for diagnostic applications, specifically those where red blood cell hemolysis and contamination of specimens with hemoglobin is not confounding. Conversely, applications that are sensitive to the presence of the hemoglobin subunits require blood separation, which relies on centrifugation to collect plasma/serum, and then cold-chain custody during shipping. All these factors introduce complexities and potentially increased costs. Here we report on a novel whole blood-collection device (BCD) that efficiently separates the liquid from cellular components, minimizes hemolysis in the plasma fraction, and maintains protein integrity during ambient transport. The simplicity of the design makes the device ideal for field use. Whole blood is acquired through venipuncture and applied to the device with an exact volume pipette. The BCD design was based on lateral-flow principles in which whole blood was applied to a defined area, allowing two minutes for blood absorption into the separation membrane, then closed for shipment. The diagnostic utility of the device was further demonstrated with shipments from multiple sites (n = 33) across the U.S. sent to two different centralized laboratories for analyses using liquid chromatography/mass spectrometry (LC/MS/MS) and matrix assisted laser desorption/ionization-time of flight (MALDI-ToF) commercial assays. Specimens showed high levels of result label concordance for the LC/MS/MS assay (Negative Predictive Value = 98%) and MALDI-ToF assay (100% result concordance). The overall goal of the device is to simplify specimen transport to the laboratory and produce clinical test results equivalent to established collection methods.

3.
J Am Soc Mass Spectrom ; 28(9): 1787-1795, 2017 09.
Article in English | MEDLINE | ID: mdl-28721671

ABSTRACT

High resolution mass spectrometry is a key technology for in-depth protein characterization. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-level interrogation of intact proteins in the most detail to date. However, an appropriate complement of fragmentation technologies must be paired with FTMS to provide comprehensive sequence coverage, as well as characterization of sequence variants, and post-translational modifications. Here we describe the integration of front-end electron transfer dissociation (FETD) with a custom-built 21 tesla FT-ICR mass spectrometer, which yields unprecedented sequence coverage for proteins ranging from 2.8 to 29 kDa, without the need for extensive spectral averaging (e.g., ~60% sequence coverage for apo-myoglobin with four averaged acquisitions). The system is equipped with a multipole storage device separate from the ETD reaction device, which allows accumulation of multiple ETD fragment ion fills. Consequently, an optimally large product ion population is accumulated prior to transfer to the ICR cell for mass analysis, which improves mass spectral signal-to-noise ratio, dynamic range, and scan rate. We find a linear relationship between protein molecular weight and minimum number of ETD reaction fills to achieve optimum sequence coverage, thereby enabling more efficient use of instrument data acquisition time. Finally, real-time scaling of the number of ETD reactions fills during method-based acquisition is shown, and the implications for LC-MS/MS top-down analysis are discussed. Graphical Abstract ᅟ.


Subject(s)
Mass Spectrometry/methods , Proteins/analysis , Proteins/chemistry , Sequence Analysis, Protein/methods , Electrons , Equipment Design , Fourier Analysis , Mass Spectrometry/instrumentation , Sequence Analysis, Protein/instrumentation , Tandem Mass Spectrometry
4.
J Proteome Res ; 16(2): 1087-1096, 2017 02 03.
Article in English | MEDLINE | ID: mdl-27936753

ABSTRACT

Successful high-throughput characterization of intact proteins from complex biological samples by mass spectrometry requires instrumentation capable of high mass resolving power, mass accuracy, sensitivity, and spectral acquisition rate. These limitations often necessitate the performance of hundreds of LC-MS/MS experiments to obtain reasonable coverage of the targeted proteome, which is still typically limited to molecular weights below 30 kDa. The National High Magnetic Field Laboratory (NHMFL) recently installed a 21 T FT-ICR mass spectrometer, which is part of the NHMFL FT-ICR User Facility and available to all qualified users. Here we demonstrate top-down LC-21 T FT-ICR MS/MS of intact proteins derived from human colorectal cancer cell lysate. We identified a combined total of 684 unique protein entries observed as 3238 unique proteoforms at a 1% false discovery rate, based on rapid, data-dependent acquisition of collision-induced and electron-transfer dissociation tandem mass spectra from just 40 LC-MS/MS experiments. Our identifications included 372 proteoforms with molecular weights over 30 kDa detected at isotopic resolution, which substantially extends the accessible mass range for high-throughput top-down LC-MS/MS.


Subject(s)
Colorectal Neoplasms/chemistry , Mass Spectrometry/methods , Neoplasm Proteins/analysis , Proteome/analysis , Proteomics/methods , Amino Acid Sequence , Colorectal Neoplasms/pathology , Complex Mixtures/chemistry , Cyclotrons/instrumentation , Fourier Analysis , Humans , Mass Spectrometry/instrumentation , Proteomics/instrumentation
5.
J Am Soc Mass Spectrom ; 26(9): 1626-32, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26091892

ABSTRACT

We describe the design and initial performance of the first 21 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The 21 tesla magnet is the highest field superconducting magnet ever used for FT-ICR and features high spatial homogeneity, high temporal stability, and negligible liquid helium consumption. The instrument includes a commercial dual linear quadrupole trap front end that features high sensitivity, precise control of trapped ion number, and collisional and electron transfer dissociation. A third linear quadrupole trap offers high ion capacity and ejection efficiency, and rf quadrupole ion injection optics deliver ions to a novel dynamically harmonized ICR cell. Mass resolving power of 150,000 (m/Δm(50%)) is achieved for bovine serum albumin (66 kDa) for a 0.38 s detection period, and greater than 2,000,000 resolving power is achieved for a 12 s detection period. Externally calibrated broadband mass measurement accuracy is typically less than 150 ppb rms, with resolving power greater than 300,000 at m/z 400 for a 0.76 s detection period. Combined analysis of electron transfer and collisional dissociation spectra results in 68% sequence coverage for carbonic anhydrase. The instrument is part of the NSF High-Field FT-ICR User Facility and is available free of charge to qualified users.

6.
Anal Chem ; 87(8): 4072-5, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25818245

ABSTRACT

To understand the role and function of a biomolecule in a biosystem, it is important to know both its composition and structure. Here, a mass spectrometric based approach has been proposed and applied to demonstrate that collision cross sections and high-resolution mass spectra of biomolecule ions may be obtained simultaneously by Fourier transform ion cyclotron resonance mass spectrometry. With this method, the unfolding phenomena for ubiquitin ions that possess different number of charges have been investigated, and results agree well with ion mobility measurements. In the present approach, we extend ion collision cross-section measurements to lower pressures than in prior ion cyclotron resonance (ICR)-based experiments, thereby maintaining the potentially high resolution of Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS), and enabling collision cross section (CCS) measurements for high-mass biomolecules.


Subject(s)
Fourier Analysis , Ubiquitin/analysis , Cyclotrons , Ions/analysis , Mass Spectrometry
7.
J Mass Spectrom ; 50(1): 280-4, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25601704

ABSTRACT

Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole.


Subject(s)
Spectroscopy, Fourier Transform Infrared/methods , Apoproteins/analysis , Cyclotrons , HeLa Cells , Hemoglobins/analysis , Histones/analysis , Humans , Ions , Spectroscopy, Fourier Transform Infrared/instrumentation , Tandem Mass Spectrometry/methods
8.
Nat Commun ; 5: 5844, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25524825

ABSTRACT

An understanding of chemical formation mechanisms is essential to achieve effective yields and targeted products. One of the most challenging endeavors is synthesis of molecular nanocarbon. Endohedral metallofullerenes are of particular interest because of their unique properties that offer promise in a variety of applications. Nevertheless, the mechanism of formation from metal-doped graphite has largely eluded experimental study, because harsh synthetic methods are required to obtain them. Here we report bottom-up formation of mono-metallofullerenes under core synthesis conditions. Charge transfer is a principal factor that guides formation, discovered by study of metallofullerene formation with virtually all available elements of the periodic table. These results could enable production strategies that overcome long-standing problems that hinder current and future applications of metallofullerenes.

9.
J Am Soc Mass Spectrom ; 25(6): 943-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24692045

ABSTRACT

An auxiliary rf waveform of the same amplitude and phase applied to all the rods of an ion accumulation multipole creates an m/z-dependent axial pseudo potential. Controlled decrease of the auxiliary rf amplitude releases ions from the accumulation multipole sequentially from high to low m/z. The slope of the auxiliary rf voltage ramp is adjusted so that ions of different m/z reach the center of the ICR cell at the same time point, which mitigates the typical time dispersion observed in external source FT-ICR and extends the observable mass range for a single data acquisition by 2- to 3-fold. For complex mixture analysis, twice the number of elemental compositions are assigned when the auxiliary rf ejection is applied compared with the standard gated trapping.

10.
Proc Natl Acad Sci U S A ; 110(45): 18081-6, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24145444

ABSTRACT

Carbonaceous presolar grains of supernovae origin have long been isolated and are determined to be the carrier of anomalous (22)Ne in ancient meteorites. That exotic (22)Ne is, in fact, the decay isotope of relatively short-lived (22)Na formed by explosive nucleosynthesis, and therefore, a selective and rapid Na physical trapping mechanism must take place during carbon condensation in supernova ejecta. Elucidation of the processes that trap Na and produce large carbon molecules should yield insight into carbon stardust enrichment and formation. Herein, we demonstrate that Na effectively nucleates formation of Na@C60 and other metallofullerenes during carbon condensation under highly energetic conditions in oxygen- and hydrogen-rich environments. Thus, fundamental carbon chemistry that leads to trapping of Na is revealed, and should be directly applicable to gas-phase chemistry involving stellar environments, such as supernova ejecta. The results indicate that, in addition to empty fullerenes, metallofullerenes should be constituents of stellar/circumstellar and interstellar space. In addition, gas-phase reactions of fullerenes with polycyclic aromatic hydrocarbons are investigated to probe "build-up" and formation of carbon stardust, and provide insight into fullerene astrochemistry.


Subject(s)
Carbon/chemistry , Fullerenes/chemistry , Models, Chemical , Organometallic Compounds/chemistry , Stars, Celestial/chemistry , Fourier Analysis , Mass Spectrometry , Polycyclic Aromatic Hydrocarbons/chemistry
11.
Environ Sci Technol ; 47(13): 7530-9, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23692145

ABSTRACT

Traditional tools for routine environmental analysis and forensic chemistry of petroleum have relied almost exclusively on gas chromatography-mass spectrometry (GC-MS), although many compounds in crude oil (and its transformation products) are not chromatographically separated or amenable to GC-MS due to volatility. To enhance current and future studies on the fate, transport, and fingerprinting of the Macondo well oil released from the 2010 Deepwater Horizon disaster, we created an extensive molecular library of the unadulterated petroleum to compare to a tar ball collected on the beach of Louisiana. We apply ultrahigh resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry to identify compositional changes at the molecular level between native and weathered crude oil samples and reveal enrichment in polar compounds inaccessible by GC-based characterization. The outlined approach provides unprecedented detail with the potential to enhance insight into the environmental fate of spilled oil, improved toxicology, molecular modeling of biotic/abiotic weathering, and comprehensive molecular characterization for petroleum-derived releases. Here, we characterize more than 30,000 acidic, basic, and nonpolar unique neutral elemental compositions for the Macondo well crude oil, to provide an archive for future chemical analyses of the environmental consequences of the oil spill.


Subject(s)
Mass Spectrometry/methods , Petroleum Pollution/analysis , Petroleum/analysis , Chromatography, Gas
12.
J Am Soc Mass Spectrom ; 24(2): 213-21, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23296907

ABSTRACT

We report the first charge reversal experiments performed by tandem-in-time rather than tandem-in-space MS/MS. Precursor odd-electron anions from fullerene C(60), and even-electron ions from 2,7-di-tert-butylfluorene-9-carboxylic acid and 3,3'-bicarbazole were converted into positive product ions ((-)CR(+)) inside the magnet of a Fourier transform ion cyclotron resonance mass spectrometer. Charge reversal was activated by irradiating precursor ions with high energy electrons or UV photons: the first reported use of those activation methods for charge reversal. We suggest that high energy electrons achieve charge reversal in one step as double electron transfer, whereas UV-activated (-)CR(+) takes place stepwise through two single electron transfers and formally corresponds to a neutralization-reionization ((-)NR(+)) experiment.

13.
Anal Chem ; 85(1): 265-72, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23194162

ABSTRACT

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) typically utilizes an m/z-independent excitation magnitude to excite all ions to the same cyclotron radius, so that the detected signal magnitude is directly proportional to the relative ion abundance. However, deleterious space charge interaction between ion clouds is maximized for clouds of equal radius. To minimize ion cloud interactions, we induce an m/z-dependent ion radius distribution (30%-45% of the maximum cell radius) that results in a 3-fold increase in mass spectral dynamic range for complex mixtures, consistent with increased ion cloud lifetime for less-abundant ion clouds. Further, broadband frequency-sweep (chirp) excitation that contains the second and/or third harmonic frequency of an excited ion cloud swept from low-to-high frequency produces systematic variations in accurate mass measurement not observed when the sweep direction is reversed. The ion cyclotron radius distribution induces an m/z-dependent frequency shift that can be corrected to provide a root-mean-square (rms) mass measurement error of <100 ppb on petroleum-based mixtures that contain tens of thousands of identified peaks.


Subject(s)
Ions/chemistry , Mass Spectrometry , Fourier Analysis , Petroleum/analysis
14.
Angew Chem Int Ed Engl ; 52(1): 315-9, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23225487

ABSTRACT

Introducing boron: heterofullerenes that incorporate boron have been scarcely studied because a formation route from C(60) is not known. It is now reported that C(59)B(-), an electronically closed-shell species, is formed directly from pristine C(60) in the gas-phase by facile atom exchange reactions.

15.
Nat Commun ; 3: 855, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22617295

ABSTRACT

Tremendous advances in nanoscience have been made since the discovery of the fullerenes; however, the formation of these carbon-caged nanomaterials still remains a mystery. Here we reveal that fullerenes self-assemble through a closed network growth mechanism by incorporation of atomic carbon and C(2). The growth processes have been elucidated through experiments that probe direct growth of fullerenes upon exposure to carbon vapour, analysed by state-of-the-art Fourier transform ion cyclotron resonance mass spectrometry. Our results shed new light on the fundamental processes that govern self-assembly of carbon networks, and the processes that we reveal in this study of fullerene growth are likely be involved in the formation of other carbon nanostructures from carbon vapour, such as nanotubes and graphene. Further, the results should be of importance for illuminating astrophysical processes near carbon stars or supernovae that result in C(60) formation throughout the Universe.


Subject(s)
Fullerenes/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Carbon/chemistry , Graphite/chemistry , Nanotubes, Carbon/chemistry
16.
J Am Chem Soc ; 134(22): 9380-9, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22519801

ABSTRACT

The smallest fullerene to form in condensing carbon vapor has received considerable interest since the discovery of Buckminsterfullerene, C(60). Smaller fullerenes remain a largely unexplored class of all-carbon molecules that are predicted to exhibit fascinating properties due to the large degree of curvature and resulting highly pyramidalized carbon atoms in their structures. However, that curvature also renders the smallest fullerenes highly reactive, making them difficult to detect experimentally. Gas-phase attempts to investigate the smallest fullerene by stabilization through cage encapsulation of a metal have been hindered by the complexity of mass spectra that result from vaporization experiments which include non-fullerene clusters, empty cages, and metallofullerenes. We use high-resolution FT-ICR mass spectrometry to overcome that problem and investigate formation of the smallest fullerene by use of a pulsed laser vaporization cluster source. Here, we report that the C(28) fullerene stabilized by encapsulation with an appropriate metal forms directly from carbon vapor as the smallest fullerene under our conditions. Its stabilization is investigated, and we show that M@C(28) is formed by a bottom-up growth mechanism and is a precursor to larger metallofullerenes. In fact, it appears that the encapsulating metal species may catalyze or nucleate endohedral fullerene formation.

17.
Anal Chem ; 83(22): 8391-5, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22011246

ABSTRACT

Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) provides the highest mass resolving power and mass measurement accuracy for unambiguous identification of biomolecules. Previously, the highest-mass protein for which FTICR unit mass resolution had been obtained was 115 kDa at 7 T. Here, we present baseline resolution for an intact 147.7 kDa monoclonal antibody (mAb), by prior dissociation of noncovalent adducts, optimization of detected total ion number, and optimization of ICR cell parameters to minimize space charge shifts, peak coalescence, and destructive ion cloud Coulombic interactions. The resultant long ICR transient lifetime (as high as 20 s) results in magnitude-mode mass resolving power of ~420,000 at m/z 2,593 for the 57+ charge state (the highest mass for which baseline unit mass resolution has been achieved), auguring for future characterization of even larger intact proteins and protein complexes by FTICR MS. We also demonstrate up to 80% higher resolving power by phase correction to yield an absorption-mode mass spectrum.


Subject(s)
Antibodies, Monoclonal/chemistry , Fourier Analysis , Mass Spectrometry/methods , Antibodies, Monoclonal/therapeutic use , Molecular Weight , Recombinant Proteins/chemistry , Recombinant Proteins/therapeutic use
18.
J Am Soc Mass Spectrom ; 22(8): 1343-51, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21953188

ABSTRACT

Fourier transform ion cyclotron resonance (FTICR) mass spectrometry provides unparalleled mass measurement accuracy and resolving power. However, propagation of the technique into new analytical fields requires continued advances in instrument speed and sensitivity. Here, we describe a substantial redesign of our custom-built 9.4 tesla FTICR mass spectrometer that improves sensitivity, acquisition speed, and provides an optimized platform for future instrumentation development. The instrument was designed around custom vacuum chambers for improved ion optical alignment, minimized distance from the external ion trap to magnetic field center, and high conductance for effective differential pumping. The length of the transfer optics is 30% shorter than the prior system, for reduced time-of-flight mass discrimination and increased ion transmission and trapping efficiency at the ICR cell. The ICR cell, electrical vacuum feedthroughs, and cabling have been improved to reduce the detection circuit capacitance (and improve detection sensitivity) 2-fold. The design simplifies access to the ICR cell, and the modular vacuum flange accommodates new ICR cell technology, including linearized excitation, high surface area detection, and tunable electrostatic trapping potential.

19.
Anal Chem ; 83(17): 6907-10, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21838231

ABSTRACT

Complex natural organic mixtures such as petroleum require ultrahigh mass spectral resolution to separate and identify thousands of elemental compositions. Here, we incorporate a custom-built, voltage-compensated ICR cell for Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS), based on a prior design by Tolmachev to produce optimal mass resolution. The compensated ICR cell installed in a custom-built 9.4 T FTICR mass spectrometer consists of seven cylindrical segments with axial proportions designed to generate a dc trapping potential that approaches an ideal three-dimensional axial quadrupolar potential. However, the empirically optimized compensation voltages do not correspond to the most quadrupolar trapping field. The compensation electrodes minimize variation in the reduced cyclotron frequency by balancing imperfections in the magnetic and electric field. The optimized voltages applied to compensation electrodes preserve ion cloud coherence for longer transient duration by approximately a factor of 2, enabling separation and identification of isobaric species (compounds with the same nominal mass but different exact mass) common in petroleum, such as C(3) vs SH(4) (separated by 3.4 mDa) and SH(3)(13)C vs (12)C(4) (separated by 1.1 mDa). The improved performance of the ICR cell provides more symmetric peak shape and better mass measurement accuracy. A positive ion atmospheric pressure photoionization (APPI) petroleum spectrum yields more than 26,000 assigned peaks, Fourier-limited resolving power of 800,000 at m/z 500 (6.6 s transient duration), and 124 part per billion root mean square (rms) error. The tunability of the compensation electrodes is critical for optimal performance.

20.
Anal Chem ; 83(5): 1732-6, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21275417

ABSTRACT

Ion cyclotron resonance frequency, f, is conventionally converted to ion mass-to-charge ratio, m/z (mass "calibration") by fitting experimental data spanning the entire detected m/z range to the relation, m/z = A/f + B/f(2), to yield rms mass error as low as ~200 ppb for ~10,000 resolved components of a petroleum crude oil. Analysis of residual error versus m/z and peak abundance reveals that systematic errors limit mass accuracy and thus the confidence in elemental composition assignments. Here, we present a calibration procedure in which the spectrum is divided into dozens of adjoining segments, and a separate calibration is applied to each, thereby eliminating systematic error with respect to m/z. Further, incorporation of a third term in the calibration equation that is proportional to the magnitude of each detected peak minimizes systematic error with respect to ion abundance. Finally, absorption-mode data analysis increases mass measurement accuracy only after minimization of systematic errors. We are able to increase the number of assigned peaks by as much as 25%, while reducing the rms mass error by as much as 3-fold, for significantly improved confidence in elemental composition assignment.

SELECTION OF CITATIONS
SEARCH DETAIL
...