Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
2.
Nat Commun ; 15(1): 5366, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926387

ABSTRACT

Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries offer more nuanced and accurate insights into the regulatory mechanisms of RNA editing in the human brain.


Subject(s)
Adenosine Deaminase , Adenosine , Autopsy , Brain , Inosine , RNA Editing , RNA-Binding Proteins , Humans , Adenosine/metabolism , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Brain/metabolism , Inosine/metabolism , Inosine/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Prefrontal Cortex/metabolism , Postmortem Changes , Male
3.
medRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38765961

ABSTRACT

Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR1 and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries illuminate the nuanced functions and intricate regulatory mechanisms of RNA editing within the human brain.

4.
medRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798344

ABSTRACT

The prefrontal cortex (PFC) is a region of the brain that in humans is involved in the production of higher-order functions such as cognition, emotion, perception, and behavior. Neurotransmission in the PFC produces higher-order functions by integrating information from other areas of the brain. At the foundation of neurotransmission, and by extension at the foundation of higher-order brain functions, are an untold number of coordinated molecular processes involving the DNA sequence variants in the genome, RNA transcripts in the transcriptome, and proteins in the proteome. These "multiomic" foundations are poorly understood in humans, perhaps in part because most modern studies that characterize the molecular state of the human PFC use tissue obtained when neurotransmission and higher-order brain functions have ceased (i.e., the postmortem state). Here, analyses are presented on data generated for the Living Brain Project (LBP) to investigate whether PFC tissue from individuals with intact higher-order brain function has characteristic multiomic foundations. Two complementary strategies were employed towards this end. The first strategy was to identify in PFC samples obtained from living study participants a signature of RNA transcript expression associated with neurotransmission measured intracranially at the time of PFC sampling, in some cases while participants performed a task engaging higher-order brain functions. The second strategy was to perform multiomic comparisons between PFC samples obtained from individuals with intact higher-order brain function at the time of sampling (i.e., living study participants) and PFC samples obtained in the postmortem state. RNA transcript expression within multiple PFC cell types was associated with fluctuations of dopaminergic, serotonergic, and/or noradrenergic neurotransmission in the substantia nigra measured while participants played a computer game that engaged higher-order brain functions. A subset of these associations - termed the "transcriptional program associated with neurotransmission" (TPAWN) - were reproduced in analyses of brain RNA transcript expression and intracranial neurotransmission data obtained from a second LBP cohort and from a cohort in an independent study. RNA transcripts involved in TPAWN were found to be (1) enriched for RNA transcripts associated with measures of neurotransmission in rodent and cell models, (2) enriched for RNA transcripts encoded by evolutionarily constrained genes, (3) depleted of RNA transcripts regulated by common DNA sequence variants, and (4) enriched for RNA transcripts implicated in higher-order brain functions by human population genetic studies. In PFC excitatory neurons of living study participants, higher expression of the genes in TPAWN tracked with higher expression of RNA transcripts that in rodent PFC samples are markers of a class of excitatory neurons that connect the PFC to deep brain structures. TPAWN was further reproduced by RNA transcript expression patterns differentiating living PFC samples from postmortem PFC samples, and significant differences between living and postmortem PFC samples were additionally observed with respect to (1) the expression of most primary RNA transcripts, mature RNA transcripts, and proteins, (2) the splicing of most primary RNA transcripts into mature RNA transcripts, (3) the patterns of co-expression between RNA transcripts and proteins, and (4) the effects of some DNA sequence variants on RNA transcript and protein expression. Taken together, this report highlights that studies of brain tissue obtained in a safe and ethical manner from large cohorts of living individuals can help advance understanding of the multiomic foundations of brain function.

5.
Nat Med ; 27(9): 1576-1581, 2021 09.
Article in English | MEDLINE | ID: mdl-34489608

ABSTRACT

Polygenic risk scores (PRS) summarize genetic liability to a disease at the individual level, and the aim is to use them as biomarkers of disease and poor outcomes in real-world clinical practice. To date, few studies have assessed the prognostic value of PRS relative to standards of care. Schizophrenia (SCZ), the archetypal psychotic illness, is an ideal test case for this because the predictive power of the SCZ PRS exceeds that of most other common diseases. Here, we analyzed clinical and genetic data from two multi-ethnic cohorts totaling 8,541 adults with SCZ and related psychotic disorders, to assess whether the SCZ PRS improves the prediction of poor outcomes relative to clinical features captured in a standard psychiatric interview. For all outcomes investigated, the SCZ PRS did not improve the performance of predictive models, an observation that was generally robust to divergent case ascertainment strategies and the ancestral background of the study participants.


Subject(s)
Genetic Predisposition to Disease , Multifactorial Inheritance/genetics , Psychotic Disorders/genetics , Schizophrenia/genetics , Adult , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Prognosis , Psychotic Disorders/pathology , Risk Factors , Schizophrenia/pathology
6.
Nat Commun ; 12(1): 4208, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244516

ABSTRACT

The transcriptional regulators underlying induction and differentiation of dense connective tissues such as tendon and related fibrocartilaginous tissues (meniscus and annulus fibrosus) remain largely unknown. Using an iterative approach informed by developmental cues and single cell RNA sequencing (scRNA-seq), we establish directed differentiation models to generate tendon and fibrocartilage cells from mouse embryonic stem cells (mESCs) by activation of TGFß and hedgehog pathways, achieving 90% induction efficiency. Transcriptional signatures of the mESC-derived cells recapitulate embryonic tendon and fibrocartilage signatures from the mouse tail. scRNA-seq further identify retinoic acid signaling as a critical regulator of cell fate switch between TGFß-induced tendon and fibrocartilage lineages. Trajectory analysis by RNA sequencing define transcriptional modules underlying tendon and fibrocartilage fate induction and identify molecules associated with lineage-specific differentiation. Finally, we successfully generate 3-dimensional engineered tissues using these differentiation protocols and show activation of mechanotransduction markers with dynamic tensile loading. These findings provide a serum-free approach to generate tendon and fibrocartilage cells and tissues at high efficiency for modeling development and disease.


Subject(s)
Fibrocartilage/growth & development , Mouse Embryonic Stem Cells/physiology , Tendons/growth & development , Tissue Engineering/methods , Transcriptional Activation , Animals , Cell Differentiation/genetics , Embryo, Mammalian , Fibrocartilage/cytology , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Mechanotransduction, Cellular/genetics , Mice , RNA-Seq , Signal Transduction/genetics , Single-Cell Analysis , Tendons/cytology , Transforming Growth Factor beta/metabolism , Tretinoin/metabolism
7.
FASEB J ; 35(6): e21618, 2021 06.
Article in English | MEDLINE | ID: mdl-33982337

ABSTRACT

Tendons are dense connective tissues that transmit muscle forces to the skeleton. After adult injury, healing potential is generally poor and dominated by scar formation. Although the immune response is a key feature of healing, the specific immune cells and signals that drive tendon healing have not been fully defined. In particular, the immune regulators underlying tendon regeneration are almost completely unknown due to a paucity of tendon regeneration models. Using a mouse model of neonatal tendon regeneration, we screened for immune-related markers and identified upregulation of several genes associated with inflammation, macrophage chemotaxis, and TGFß signaling after injury. Depletion of macrophages using AP20187 treatment of MaFIA mice resulted in impaired functional healing, reduced cell proliferation, reduced ScxGFP+ neo-tendon formation, and altered tendon gene expression. Collectively, these results show that inflammation is a key component of neonatal tendon regeneration and demonstrate a requirement for macrophages in effective functional healing.


Subject(s)
Cell Proliferation , Inflammation/therapy , Macrophages/immunology , Regeneration , Tendon Injuries/therapy , Tenocytes/cytology , Wound Healing , Animals , Animals, Newborn , Disease Models, Animal , Female , Inflammation/immunology , Inflammation/pathology , Male , Mice , Tendon Injuries/immunology , Tendon Injuries/pathology , Tenocytes/physiology
8.
Elife ; 92020 06 05.
Article in English | MEDLINE | ID: mdl-32501213

ABSTRACT

Tendon injuries are common with poor healing potential. The paucity of therapies for tendon injuries is due to our limited understanding of the cells and molecular pathways that drive tendon regeneration. Using a mouse model of neonatal tendon regeneration, we identified TGFß signaling as a major molecular pathway that drives neonatal tendon regeneration. Through targeted gene deletion, small molecule inhibition, and lineage tracing, we elucidated TGFß-dependent and TGFß-independent mechanisms underlying tendon regeneration. Importantly, functional recovery depended on canonical TGFß signaling and loss of function is due to impaired tenogenic cell recruitment from both Scleraxis-lineage and non-Scleraxis-lineage sources. We show that TGFß signaling is directly required in neonatal tenocytes for recruitment and that TGFß ligand is positively regulated in tendons. Collectively, these results show a functional role for canonical TGFß signaling in tendon regeneration and offer new insights toward the divergent cellular activities that distinguish regenerative vs fibrotic healing.


Subject(s)
Signal Transduction , Tendon Injuries/metabolism , Tenocytes/metabolism , Transforming Growth Factor beta/metabolism , Wound Healing , Animals , Animals, Newborn , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Movement , Female , Male , Mice , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/genetics
9.
J Orthop Res ; 38(4): 708-718, 2020 04.
Article in English | MEDLINE | ID: mdl-31721278

ABSTRACT

In this review, we highlight themes from a recent workshop focused on "Plasticity of Cell Fate in Musculoskeletal Tissues" held at the Orthopaedic Research Society's 2019 annual meeting. Experts in the field provided examples of mesenchymal cell plasticity during normal musculoskeletal development, regeneration, and disease. A thorough understanding of the biology underpinning mesenchymal cell plasticity may offer a roadmap for promoting regeneration while attenuating pathologic differentiation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:708-718, 2020.


Subject(s)
Cell Plasticity , Musculoskeletal Development , Animals , Cell Differentiation , Disease , Humans , Myositis Ossificans/genetics , Ossification, Heterotopic/etiology , Regeneration , Wounds and Injuries/complications
10.
Global Spine J ; 9(3): 321-330, 2019 May.
Article in English | MEDLINE | ID: mdl-31192101

ABSTRACT

STUDY DESIGN: Retrospective cohort study. OBJECTIVE: Malnutrition has been shown to be a risk factor for poor perioperative outcomes in multiple surgical subspecialties, but few studies have specifically investigated the effect of hypoalbuminemia in patients undergoing operative treatment of metastatic spinal tumors. The aim of this study was to assess the role of hypoalbuminemia as an independent risk factor for 30-day perioperative mortality and morbidity after surgical decompression of metastatic spinal tumors using the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database from 2011 to 2014. METHODS: We identified 1498 adult patients in the ACS-NSQIP database who underwent laminectomy and excision of metastatic extradural spinal tumors. Patients were categorized into normoalbuminemic and hypoalbuminemic (ie, albumin level <3.5 g/dL) groups. Univariate and multivariate regression analyses were performed to examine the association between preoperative hypoalbuminemia and 30-day perioperative mortality and morbidity. Subgroup analysis was performed in the hypoalbuminemic group to assess the dose-dependent effect of albumin depletion. RESULTS: Hypoalbuminemia was associated with increased risk of perioperative mortality, any complication, sepsis, intra- or postoperative transfusion, prolonged hospitalization, and non-home discharge. However, albumin depletion was also associated with decreased risk of readmission. There was an albumin level-dependent effect of increasing mortality and complication rates with worsening albumin depletion. CONCLUSIONS: Hypoalbuminemia is an independent risk factor for perioperative mortality and morbidity following surgical decompression of metastatic spinal tumors with a dose-dependent effect on mortality and complication rates. Therefore, it is important to address malnutrition and optimize nutritional status prior to surgery.

11.
PLoS One ; 14(2): e0211057, 2019.
Article in English | MEDLINE | ID: mdl-30759094

ABSTRACT

This study trained long short-term memory (LSTM) recurrent neural networks (RNNs) incorporating an attention mechanism to predict daily sepsis, myocardial infarction (MI), and vancomycin antibiotic administration over two week patient ICU courses in the MIMIC-III dataset. These models achieved next-day predictive AUC of 0.876 for sepsis, 0.823 for MI, and 0.833 for vancomycin administration. Attention maps built from these models highlighted those times when input variables most influenced predictions and could provide a degree of interpretability to clinicians. These models appeared to attend to variables that were proxies for clinician decision-making, demonstrating a challenge of using flexible deep learning approaches trained with EHR data to build clinical decision support. While continued development and refinement is needed, we believe that such models could one day prove useful in reducing information overload for ICU physicians by providing needed clinical decision support for a variety of clinically important tasks.


Subject(s)
Clinical Decision-Making , Deep Learning , Diagnosis, Computer-Assisted , Intensive Care Units , Models, Biological , Myocardial Infarction/diagnosis , Sepsis/diagnosis , Anti-Bacterial Agents/administration & dosage , Clinical Decision-Making/methods , Humans , Myocardial Infarction/pathology , Retrospective Studies , Sepsis/drug therapy , Sepsis/pathology , Vancomycin/administration & dosage
12.
Spine (Phila Pa 1976) ; 43(11): E648-E655, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29028760

ABSTRACT

STUDY DESIGN: A retrospective cohort study from 2011 to 2014 was performed using the American College of Surgeons National Surgical Quality Improvement Program database. OBJECTIVE: The purpose of this study was to assess the impact of tumor location in the cervical, thoracic, or lumbosacral spine on 30-day perioperative mortality and morbidity after surgical decompression of metastatic extradural spinal tumors. SUMMARY OF BACKGROUND DATA: Operative treatment of metastatic spinal tumors involves extensive procedures that are associated with significant complication rates and healthcare costs. Past studies have examined various risk factors for poor clinical outcomes after surgical decompression procedures for spinal tumors, but few studies have specifically investigated the impact of tumor location on perioperative mortality and morbidity. METHODS: We identified 2238 patients in the American College of Surgeons National Surgical Quality Improvement Program database who underwent laminectomy for excision of metastatic extradural tumors in the cervical, thoracic, or lumbosacral spine. Baseline patient characteristics were collected from the database. Univariate and multivariate regression analyses were performed to examine the association between spinal tumor location and 30-day perioperative mortality and morbidity. RESULTS: On univariate analysis, cervical spinal tumors were associated with the highest rate of pulmonary complications. Multivariate regression analysis demonstrated that cervical spinal tumors had the highest odds of multiple perioperative complications. However, thoracic spinal tumors were associated with the highest risk of intra- or postoperative blood transfusion. In contrast, patients with metastatic tumors in the lumbosacral spine had lower odds of perioperative mortality, pulmonary complications, and sepsis. CONCLUSION: Tumor location is an independent risk factor for perioperative mortality and morbidity after surgical decompression of metastatic spinal tumors. The addition of tumor location to existing prognostic scoring systems may help to improve their predictive accuracy. LEVEL OF EVIDENCE: 3.


Subject(s)
Cervical Vertebrae/surgery , Decompression, Surgical/methods , Lumbar Vertebrae/surgery , Spinal Neoplasms/surgery , Thoracic Vertebrae/surgery , Adolescent , Adult , Aged , Aged, 80 and over , Cervical Vertebrae/pathology , Decompression, Surgical/mortality , Female , Humans , Lumbar Vertebrae/pathology , Male , Middle Aged , Postoperative Period , Retrospective Studies , Risk Factors , Spinal Neoplasms/secondary , Thoracic Vertebrae/pathology , Young Adult
13.
Circ Res ; 121(4): 411-423, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28642329

ABSTRACT

RATIONALE: Myocardial delivery of human mesenchymal stem cells (hMSCs) is an emerging therapy for treating the failing heart. However, the relative effects of hMSC-mediated heterocellular coupling (HC) and paracrine signaling (PS) on human cardiac contractility and arrhythmogenicity remain unresolved. OBJECTIVE: The objective is to better understand hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity by integrating experimental and computational approaches. METHODS AND RESULTS: Extending our previous hMSC-cardiomyocyte HC computational model, we incorporated experimentally calibrated hMSC PS effects on cardiomyocyte L-type calcium channel/sarcoendoplasmic reticulum calcium-ATPase activity and cardiac tissue fibrosis. Excitation-contraction simulations of hMSC PS-only and combined HC+PS effects on human cardiomyocytes were representative of human engineered cardiac tissue (hECT) contractile function measurements under matched experimental treatments. Model simulations and hECTs both demonstrated that hMSC-mediated effects were most pronounced under PS-only conditions, where developed force increased ≈4-fold compared with non-hMSC-supplemented controls during physiological 1-Hz pacing. Simulations predicted contractility of isolated healthy and ischemic adult human cardiomyocytes would be minimally sensitive to hMSC HC, driven primarily by PS. Dominance of hMSC PS was also revealed in simulations of fibrotic cardiac tissue, where hMSC PS protected from potential proarrhythmic effects of HC at various levels of engraftment. Finally, to study the nature of the hMSC paracrine effects on contractility, proteomic analysis of hECT/hMSC conditioned media predicted activation of PI3K/Akt signaling, a recognized target of both soluble and exosomal fractions of the hMSC secretome. Treating hECTs with exosome-enriched, but not exosome-depleted, fractions of the hMSC secretome recapitulated the effects observed with hMSC conditioned media on hECT-developed force and expression of calcium-handling genes (eg, SERCA2a, L-type calcium channel). CONCLUSIONS: Collectively, this integrated experimental and computational study helps unravel relative hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity, and provides novel insight into the role of exosomes in hMSC paracrine-mediated effects on contractility.


Subject(s)
Computer Simulation , Excitation Contraction Coupling/physiology , Mesenchymal Stem Cells/physiology , Myocardial Contraction/physiology , Myocytes, Cardiac/physiology , Paracrine Communication/physiology , Action Potentials/physiology , Animals , Arrhythmias, Cardiac/physiopathology , Cell Culture Techniques , Cell Differentiation/physiology , Cells, Cultured , Humans , Mice , Rats
14.
Eur Respir J ; 45(5): 1248-57, 2015 May.
Article in English | MEDLINE | ID: mdl-25573407

ABSTRACT

Our goal was to investigate whether obesity increases susceptibility to the adverse effects of indoor particulate matter on respiratory morbidity among individuals with chronic obstructive pulmonary disease (COPD). Participants with COPD were studied at baseline, 3 and 6 months. Obesity was defined as a body mass index ≥30 kg·m(-2). At each time point, indoor air was sampled for 5-7 days and particulate matter (PM) with an aerodynamic size ≤2.5 µm (PM2.5) and 2.5-10 µm (PM2.5-10) was measured. Respiratory symptoms, health status, rescue medication use, exacerbations, blood biomarkers and exhaled nitric oxide were assessed simultaneously. Of the 84 participants enrolled, 56% were obese and all were former smokers with moderate-to-severe COPD. Obese participants tended to have less severe disease as assessed by Global Initiative for Chronic Obstructive Pulmonary Disease stage and fewer pack-years of smoking. There was evidence that obesity modified the effects of indoor PM on COPD respiratory outcomes. Increases in PM2.5 and PM2.5-10 were associated with greater increases in nocturnal symptoms, dyspnoea and rescue medication use among obese versus non-obese participants. The impact of indoor PM on exacerbations, respiratory status and wheeze also tended to be greater among obese versus non-obese participants, as were differences in airway and systemic inflammatory responses to indoor PM. We found evidence that obesity was associated with exaggerated responses to indoor fine and coarse PM exposure among individuals with COPD.


Subject(s)
Air Pollution, Indoor/analysis , Disease Susceptibility , Obesity/complications , Particulate Matter/adverse effects , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/etiology , Aged , Air Pollutants , Biomarkers/blood , Body Height , Body Mass Index , Body Weight , Environmental Exposure , Environmental Monitoring , Female , Forced Expiratory Volume , Health Status , Humans , Inflammation , Male , Middle Aged , Particle Size , Risk Factors , Smoking , Spirometry
15.
BMC Pulm Med ; 14: 147, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25205263

ABSTRACT

BACKGROUND: Indoor particulate matter (PM) has been linked to respiratory symptoms in former smokers with COPD. While subjects with COPD and atopy have also been shown to have more frequent respiratory symptoms, whether they exhibit increased susceptibility to PM as compared to their non-atopic counterparts remains unclear. The aim of this study was to determine whether atopic individuals with COPD have greater susceptibility to PM compared to non-atopic individuals with COPD. METHODS: Former smokers with moderate to severe COPD were enrolled (n = 77). PM2.5, PM with diameter <2.5 micrometers, was measured in the main living area over three one-week monitoring periods at baseline, 3, and 6 months. Quality of life, respiratory symptoms and medication use were assessed by questionnaires. Serum was analyzed for specific IgE for mouse, cockroach, cat, dog and dust mite allergens. Atopy was established if at least one test was positive. Interaction terms between PM and atopy were tested and generalized estimating equation analysis determined the effect of PM concentrations on health outcomes. Multivariate models were adjusted for age, sex, education, race, season, and baseline lung function and stratified by atopic status. RESULTS: Among atopic individuals, each 10 µg/m(3) increase in PM was associated with higher risk of nocturnal symptoms (OR, 1.95; P = 0.02), frequent wheezing (OR, 2.49; P = 0.02), increased rescue medication use (ß = 0.14; P = 0.02), dyspnea (ß = 0.23; P < 0.001), higher St. George's Respiratory Quality of Life score (ß = 2.55; P = 0.01), and higher breathlessness, cough, and sputum score (BCSS) (ß = 0.44; P = 0.01). There was no association between PM and health outcomes among the non-atopic individuals. Interaction terms between PM2.5 and atopy were statistically significant for nocturnal symptoms, frequency of rescue medication use, and BCSS (all P < 0.1). CONCLUSIONS: Individuals with COPD and atopy appear to be at higher risk of adverse respiratory health effects of PM exposure compared to non-atopic individuals with COPD.


Subject(s)
Air Pollution, Indoor/adverse effects , Hypersensitivity/complications , Inhalation Exposure/adverse effects , Particulate Matter/toxicity , Pulmonary Disease, Chronic Obstructive/complications , Aged , Animals , Cockroaches/immunology , Cough/etiology , Dander/immunology , Dyspnea/etiology , Female , Humans , Immunoglobulin E/blood , Male , Middle Aged , Mites/immunology , Pulmonary Disease, Chronic Obstructive/drug therapy , Quality of Life , Respiratory Sounds/etiology , Severity of Illness Index , Sputum , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...