Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Cell Commun Signal ; 17(4): 1181-1202, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38019354

ABSTRACT

The treatment of cancer patients has been prohibited by chemoresistance. Doxorubicin (DOX) is an anti-tumor compound disrupting proliferation and triggering cell cycle arrest via inhibiting activity of topoisomerase I and II. miRNAs are endogenous RNAs localized in cytoplasm to reduce gene level. Abnormal expression of miRNAs changes DOX cytotoxicity. Overexpression of tumor-promoting miRNAs induces DOX resistance, while tumor-suppressor miRNAs inhibit DOX resistance. The miRNA-mediated regulation of cell death and hallmarks of cancer can affect response to DOX chemotherapy in tumor cells. The transporters such as P-glycoprotein are regulated by miRNAs in DOX chemotherapy. Upstream mediators including lncRNAs and circRNAs target miRNAs in affecting capacity of DOX. The response to DOX chemotherapy can be facilitated after administration of agents that are mostly phytochemicals including curcumol, honokiol and ursolic acid. These agents can regulate miRNA expression increasing DOX's cytotoxicity. Since delivery of DOX alone or in combination with other drugs and genes can cause synergistic impact, the nanoparticles have been introduced for drug sensitivity. The non-coding RNAs determine the response of tumor cells to doxorubicin chemotherapy. microRNAs play a key role in this case and they can be sponged by lncRNAs and circRNAs, showing interaction among non-coding RNAs in the regulation of doxorubicin sensitivity.

2.
Clin. transl. oncol. (Print) ; 25(5): 1167-1188, mayo 2023.
Article in English | IBECS | ID: ibc-219505

ABSTRACT

Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients (AU)


Subject(s)
Humans , Breast Neoplasms/therapy , RNA, Small Interfering , Nanoparticles , Drug Delivery Systems
3.
Article in English | MEDLINE | ID: mdl-37069720

ABSTRACT

The capacity of cancer cells for abnormal growth and metastasis has made it difficult to find a cure for tumor. Both males and females suffer from lung tumors, and physicians still deem them incurable. The initiation and development of lung tumors can be forced by genomic mutations. Wnt is a critical pathway for regulating growth, differentiation and migration. However, its oncogenic function has been observed in lung cancer. Wnt is able to increase the proliferation of lung tumors. The metastasis potential of lung tumors can be accelerated by Wnt/EMT axis. Overexpression of Wnt/ß-catenin prevents chemotherapy-mediated cell death in lung tumors. This pathway promotes cancer stem cell features in lung tumors which induce radioresistance. Anti-cancer agents, such as curcumin, are able to inhibit Wnt in lung tumor treatment. Wnt interaction with other factors in lung tumors is essential in controlling biological behavior, and non-coding RNA transcripts are the most well-known ones. It can be concluded from the current study that Wnt is an important regulator of lung tumorigenesis, and the translation of these findings into the clinic is vital.

4.
Biomed Pharmacother ; 160: 114313, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36738498

ABSTRACT

Up to 18% of cancer-related deaths worldwide are attributed to lung tumor and global burden of this type of cancer is ascending. Different factors are responsible for development of lung cancer such as smoking, environmental factors and genetic mutations. EZH2 is a vital protein with catalytic activity and belongs to PCR2 family. EZH2 has been implicated in regulating gene expression by binding to promoter of targets. The importance of EZH2 in lung cancer is discussed in current manuscript. Activation of EZH2 significantly elevates the proliferation rate of lung cancer. Furthermore, metastasis and associated molecular mechanisms including EMT undergo activation by EZH2 in enhancing the lung cancer progression. The response of lung cancer to therapy can be significantly diminished due to EZH2 upregulation. Since EZH2 increases tumor progression, anti-cancer agents suppressing its expression reduce malignancy. In spite of significant effort in understanding modulatory function of EZH2 on other pathways, it appears that EZH2 can be also regulated and controlled by other factors that are described in current review. Therefore, translating current findings to clinic can improve treatment and management of lung cancer patients.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Lung Neoplasms , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Signal Transduction , Lung/pathology , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics
5.
Int J Biol Macromol ; 232: 123377, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36702226

ABSTRACT

Changes in lifestyle such as physical activity and eating habits have been one of the main reasons for development of various diseases in modern world, especially cancer. However, role of genetic factors in initiation of cancer cannot be ignored and Wnt/ß-catenin signaling is such factor that can affect tumor progression. Breast tumor is the most malignant tumor in females and it causes high mortality and morbidity around the world. The survival and prognosis of patients are not still desirable, although there have been advances in introducing new kinds of therapies and diagnosis. The present review provides an update of Wnt/ß-catenin function in breast cancer malignancy. The upregulation of Wnt is commonly observed during progression of breast tumor and confirms that tumor cells are dependent on this pathway Wnt/ß-catenin induction prevents apoptosis that is of importance for mediating drug resistance. Furthermore, Wnt/ß-catenin signaling induces DNA damage repair in ameliorating radio-resistance. Wnt/ß-catenin enhances proliferation and metastasis of breast tumor. Wnt/ß-catenin induces EMT and elevates MMP expression. Furthermore, Wnt/ß-catenin participates in tumor microenvironment remodeling and due to its tumor-promoting factor, drugs for its suppression have been developed. Different kinds of upstream mediators Wnt/ß-catenin signaling in breast cancer have been recognized that their targeting is a therapeutic approach. Finally, Wnt/ß-catenin can be considered as a biomarker in clinical trials.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/pathology , beta Catenin/genetics , beta Catenin/metabolism , Wnt Signaling Pathway , Transcriptional Activation , Up-Regulation , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Tumor Microenvironment
6.
Clin Transl Oncol ; 25(5): 1167-1188, 2023 May.
Article in English | MEDLINE | ID: mdl-36562927

ABSTRACT

Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients.


Subject(s)
Breast Neoplasms , Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , RNA, Small Interfering/genetics , Cell Line, Tumor , Cell Death , RNA Interference , Drug Delivery Systems
7.
J Cell Commun Signal ; 17(3): 423-443, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36367667

ABSTRACT

Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.

8.
Pharmacol Res ; 186: 106535, 2022 12.
Article in English | MEDLINE | ID: mdl-36334877

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is a process that involves the transformation of polarized epithelial cells to attain a mesenchymal phenotype that presents an elevated migratory potential, invasiveness, and antiapoptotic properties. Many studies have demonstrated that EMT is a prominent event that is associated with embryogenesis, tumor progression, metastasis, and therapeutic resistance. The EMT process is driven by key transcription factors (such as Snail, Twist, ZEB, and TGF-ß) and several long non-coding RNAs (lncRNAs) in many non-pathological as well as pathological conditions. In the present report, we have comprehensively discussed the oncogenic and tumor suppressor role of lncRNAs and their mechanism of action in the regulation of the EMT process in various cancers such as brain tumors, gastrointestinal tumors, and gynecological and urological tumors. We have also elaborated on the role of lncRNAs in the regulation of EMT-related transcription factors (such as Snail, Twist, ZEB, and TGF-ß) and therapeutic response (chemoresistance and radioresistance). Lastly, we have emphasized the role of exosomal lncRNAs in the regulation of EMT, metastasis, and therapeutic response in the aforementioned cancers. Taken together, this review provides a detailed insight into the understanding of role of lncRNAs/exosomal lncRNAs in EMT, metastasis, and therapeutic response in human cancers.


Subject(s)
Neoplasms , RNA, Long Noncoding , Humans , Epithelial-Mesenchymal Transition , RNA, Long Noncoding/genetics , Drug Resistance, Neoplasm/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/radiotherapy , Transforming Growth Factor beta/metabolism , Transcription Factors/genetics , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic
9.
Pharmacol Res ; 185: 106475, 2022 11.
Article in English | MEDLINE | ID: mdl-36202185

ABSTRACT

Urological cancers are considered as life-threatening diseases around the world. Bladder cancer is one of the most malignant urological tumors with high mortality and morbidity. Bladder cancer is a heterogenous disease and genetic alterations have shown to be key players in regulating its progression. Although conventional therapies are somewhat beneficial in improving prognosis and survival, bladder cancer patients suffer from recurrence. MicroRNAs (miRNAs) are endogenous short RNA molecules that do not encode proteins and show dysregulated expression in human cancers. miRNAs are regulators of vital biological processes in cells such as proliferation, migration, differentiation and apoptosis. Dysregulation of miRNAs is observed in bladder cancer and they are used as biomarkers for diagnosis and prognosis of patients. LncRNAs and circRNAs are modulators of bladder cancer progression via miRNA expression regulation. Overexpression of onco-suppressor miRNAs impairs bladder cancer progression, while oncogenic miRNAs drive tumor progression. Glycolysis and EMT mechanisms are two important factors for proliferation and migration of bladder cancer that are modulated by miRNAs. Furthermore, miRNAs can affect STAT3 and Wnt/ß-catenin as instances of molecular factors in regulating bladder tumor progression. Bladder tumor response to drug therapy and radiotherapy is regulated by miRNAs. Hence, aim of current review is to provide function of miRNAs in bladder cancer based on their crosstalk with other molecular pathways and interaction with biological processes.


Subject(s)
Biological Phenomena , MicroRNAs , Urinary Bladder Neoplasms , Humans , MicroRNAs/metabolism , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Prognosis , RNA, Circular , Gene Expression Regulation, Neoplastic
10.
Biomed Pharmacother ; 155: 113774, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36271556

ABSTRACT

One of the malignant tumors in women that has involved both developed and developing countries is breast cancer. Similar to other types of tumors, breast cancer cells demonstrate high metastatic nature. Besides, breast tumor cells have ability of developing drug resistance. EMT is the related mechanism to cancer metastasis and focus of current manuscript is highlighting function of EMT in breast tumor malignancy and drug resistance. Breast tumor cells increase their migration by EMT induction During EMT, N-cadherin and vimentin levels increase, and E-cadherin levels decrease to mediate EMT-induced breast tumor invasion. Different kinds of anti-cancer agents such as tamoxifen, cisplatin and paclitaxel that EMT induction mediates chemoresistance feature of breast tumor cells. Furthermore, EMT induction correlates with radio-resistance in breast tumor. Clinical aspect is reversing EMT in preventing chemotherapy or radiotherapy failure in breast cancer patients and improving their survival time. The anti-tumor agents that suppress EMT can be used for decreasing breast cancer invasion and increasing chemosensitivity of tumor cells. Furthermore, lncRNAs, miRNAs and other factors can modulate EMT in breast tumor progression that are discussed here.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Vimentin , Cisplatin/pharmacology , Epithelial-Mesenchymal Transition , RNA, Long Noncoding/pharmacology , Cell Line, Tumor , Cadherins , Paclitaxel/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance , Tamoxifen/pharmacology , MicroRNAs/genetics , MicroRNAs/pharmacology , Cell Movement
11.
Biomed Pharmacother ; 156: 113860, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36272267

ABSTRACT

Cancer is a leading cause of death worldwide and around 10 million deaths in 2020 were related to cancer. There are a number of therapeutic modalities for cancer such as chemotherapy, radiotherapy and surgery. However, tumor cells have capacity of developing resistance to chemotherapy and radiotherapy. Genetic mutations participate in development and progression of cancer. The current review focuses on the role of SOX2 transcription factor in cancer. SOX2 has capacity of increasing growth and metastasis of cancer cells. It functions as double-edged sword and has ability of suppressing tumor progression. Increasing evidence reveals that SOX2 is involved in triggering resistance to chemotherapy and radiotherapy. SOX2 promotes stemness of tumor cells and increases the number of cancer stem cells. SOX2 overexpression occurs in the tumor cells and tissues to ensure their proliferation and metastasis. Silencing SOX2 using CRISPR or siRNA impairs progression of the cancer cells and reduces their survival rate. SOX2 demonstrates interactions with other factors such as miRNAs, lncRNAs, STAT3 and Wnt/ß-catenin, among others to regulate progression of the tumor cells. SOX2 can be considered as a biomarker in cancer patients. SOX2 overexpression is associated with lymph node metastasis, low survival rate and poor prognosis of cancer patients.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Humans , SOXB1 Transcription Factors/genetics , Neoplasms/genetics , Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
12.
Int J Biol Macromol ; 222(Pt A): 1151-1167, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36191781

ABSTRACT

Cancer is a challenging to treat disease with a high mortality rate worldwide, nevertheless advances in science has led to a decrease in the number of death cases caused by cancer. Aberrant expression of genes occurs during tumorigenesis therefore targeting the signaling pathways that regulate these genes' expression is of importance in cancer therapy. Notch is one of the signaling pathways having interactions with other vital cell signaling molecules responsible for cellular functions such as proliferation, apoptosis, invasion, metastasis, epithelial-to-mesenchymal transition (EMT), angiogenesis, and immune evasion. Furthermore, the Notch pathway is involved in response to chemo- and radiotherapy. Thus, targeting the Notch signaling pathway in cancer therapy can be beneficial for overcoming the therapeutic gaps. Non-coding RNAs (ncRNAs) are a class of RNAs that include short ncRNAs (such as micro RNAs) and long ncRNAs (lncRNAs). MicroRNAs (miRNAs) are ~22 nucleotides in length while lncRNAs have more than 200 nucleotides. Both miRNAs and lncRNAs control vital cellular mechanisms in cells and affect various signaling pathways and Notch is among them. The current review aims to discuss the critical role of ncRNAs in the regulation of the Notch signaling pathway by focusing on different cancer hallmarks including proliferation, apoptosis, autophagy, EMT, invasion, metastasis, and resistance to therapies.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation, Neoplastic , RNA, Untranslated/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Cell Proliferation/genetics , Nucleotides
13.
Life Sci ; 309: 120984, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36150461

ABSTRACT

Urological cancers include bladder, prostate and renal cancers that can cause death in males and females. Patients with urological cancers are mainly diagnosed at an advanced disease stage when they also develop resistance to therapy or poor response. The use of natural products in the treatment of urological cancers has shown a significant increase. Curcumin has been widely used in cancer treatment due to its ability to trigger cell death and suppress metastasis. The beneficial effects of curcumin in the treatment of urological cancers is the focus of current review. Curcumin can induce apoptosis in the three types of urological cancers limiting their proliferative potential. Furthermore, curcumin can suppress invasion of urological cancers through EMT inhibition. Notably, curcumin decreases the expression of MMPs, therefore interfering with urological cancer metastasis. When used in combination with chemotherapy agents, curcumin displays synergistic effects in suppressing cancer progression. It can also be used as a chemosensitizer. Based on pre-clinical studies, curcumin administration is beneficial in the treatment of urological cancers and future clinical applications might be considered upon solving problems related to the poor bioavailability of the compound. To improve the bioavailability of curcumin and increase its therapeutic index in urological cancer suppression, nanostructures have been developed to favor targeted delivery.


Subject(s)
Antineoplastic Agents , Biological Products , Curcumin , Urologic Neoplasms , Male , Female , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Urologic Neoplasms/drug therapy , Urologic Neoplasms/chemically induced , Biological Products/pharmacology
14.
Biomed Pharmacother ; 154: 113609, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36037786

ABSTRACT

Epigenetic factors are critical regulators of biological and pathological mechanisms and they could interact with different molecular pathways. Targeting epigenetic factors has been an idea approach in disease therapy, especially cancer. Accumulating evidence has highlighted function of long non-coding RNAs (lncRNAs) as epigenetic factors in cancer initiation and development and has focused on their association with downstream targets. microRNAs (miRNAs) are the most well-known targets of lncRNAs and present review focuses on lncRNA-miRNA axis in malignancy and therapy resistance of tumors. LncRNA-miRNA regulates cell death mechanisms such as apoptosis and autophagy in cancers. This axis affects tumor metastasis via regulating EMT and MMPs. Besides, lncRNA-miRNA axis determines sensitivity of tumor cells to chemotherapy, radiotherapy and immunotherapy. Based on the studies, lncRNAs can be affected by drugs and genetic tools in cancer therapy and this may affect expression level of miRNAs as their downstream targets, leading to cancer suppression/progression. LncRNAs have both tumor-promoting and tumor-suppressor functions in cancer and this unique function of lncRNAs has complicated their implication in tumor therapy. LncRNA-miRNA axis can also affect other signaling networks in cancer such as PI3K/Akt, STAT3, Wnt/ß-catenin and EZH2 among others. Notably, lncRNA/miRNA axis can be considered as a signature for diagnosis and prognosis in cancers.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Signal Transduction/genetics
15.
Pharmacol Res ; 182: 106311, 2022 08.
Article in English | MEDLINE | ID: mdl-35716914

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis of tumor cells and their spread to various organs and tissues of body, providing undesirable prognosis. In addition to migration, EMT increases stemness and mediates therapy resistance. Hence, pathways involved in EMT regulation should be highlighted. STAT3 is an oncogenic pathway that can elevate growth rate and migratory ability of cancer cells and induce drug resistance. The inhibition of STAT3 signaling impairs cancer progression and promotes chemotherapy-mediated cell death. Present review focuses on STAT3 and EMT interaction in modulating cancer migration. First of all, STAT3 is an upstream mediator of EMT and is able to induce EMT-mediated metastasis in brain tumors, thoracic cancers and gastrointestinal cancers. Therefore, STAT3 inhibition significantly suppresses cancer metastasis and improves prognosis of patients. EMT regulators such as ZEB1/2 proteins, TGF-ß, Twist, Snail and Slug are affected by STAT3 signaling to stimulate cancer migration and invasion. Different molecular pathways such as miRNAs, lncRNAs and circRNAs modulate STAT3/EMT axis. Furthermore, we discuss how STAT3 and EMT interaction affects therapy response of cancer cells. Finally, we demonstrate targeting STAT3/EMT axis by anti-tumor agents and clinical application of this axis for improving patient prognosis.


Subject(s)
MicroRNAs , Neoplasms , Cell Line, Tumor , Cell Movement/physiology , Epithelial-Mesenchymal Transition/physiology , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Metastasis , Neoplasms/drug therapy , STAT3 Transcription Factor/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL