Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Front Cell Dev Biol ; 12: 1403128, 2024.
Article in English | MEDLINE | ID: mdl-38665431

ABSTRACT

[This corrects the article DOI: 10.3389/fcell.2024.1395922.].

3.
4.
Cells ; 12(7)2023 03 24.
Article in English | MEDLINE | ID: mdl-37048079

ABSTRACT

We recently reported the benefit of the IV transferring of active exogenous mitochondria in a short-term pharmacological AD (Alzheimer's disease) model. We have now explored the efficacy of mitochondrial transfer in 5XFAD transgenic mice, aiming to explore the underlying mechanism by which the IV-injected mitochondria affect the diseased brain. Mitochondrial transfer in 5XFAD ameliorated cognitive impairment, amyloid burden, and mitochondrial dysfunction. Exogenously injected mitochondria were detected in the liver but not in the brain. We detected alterations in brain proteome, implicating synapse-related processes, ubiquitination/proteasome-related processes, phagocytosis, and mitochondria-related factors, which may lead to the amelioration of disease. These changes were accompanied by proteome/metabolome alterations in the liver, including pathways of glucose, glutathione, amino acids, biogenic amines, and sphingolipids. Altered liver metabolites were also detected in the serum of the treated mice, particularly metabolites that are known to affect neurodegenerative processes, such as carnosine, putrescine, C24:1-OH sphingomyelin, and amino acids, which serve as neurotransmitters or their precursors. Our results suggest that the beneficial effect of mitochondrial transfer in the 5XFAD mice is mediated by metabolic signaling from the liver via the serum to the brain, where it induces protective effects. The high efficacy of the mitochondrial transfer may offer a novel AD therapy.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Amyloid beta-Peptides/metabolism , Proteome/metabolism , Alzheimer Disease/metabolism , Brain/metabolism , Mitochondria/metabolism , Mice, Transgenic , Liver/metabolism
5.
Front Cell Dev Biol ; 10: 1014798, 2022.
Article in English | MEDLINE | ID: mdl-36544904

ABSTRACT

Cisplatin is an effective chemotherapeutic agent for treating triple negative breast cancer (TNBC). Nevertheless, cisplatin-resistance might develop during the course of treatment, allegedly by metabolic reprograming, which might influence epigenetic regulation. We hypothesized that the histone deacetylase inhibitor (HDACi) valproic acid (VPA) can counter the cisplatin-induced metabolic changes leading to its resistance. We performed targeted metabolomic and real time PCR analyses on MDA-MB-231 TNBC cells treated with cisplatin, VPA or their combination. 22 (88%) out of the 25 metabolites most significantly modified by the treatments, were acylcarnitines (AC) and three (12%) were phosphatidylcholines (PCs). The most discernible effects were up-modulation of AC by cisplatin and, contrarily, their down-modulation by VPA, which was partial in the VPA-cisplatin combination. Furthermore, the VPA-cisplatin combination increased PCs, sphingomyelins (SM) and hexose levels, as compared to the other treatments. These changes predicted modulation of different metabolic pathways, notably fatty acid degradation, by VPA. Lastly, we also show that the VPA-cisplatin combination increased mRNA levels of the fatty acid oxidation (FAO) promoting enzymes acyl-CoA synthetase long chain family member 1 (ACSL1) and decreased mRNA levels of fatty acid synthase (FASN), which is the rate limiting enzyme of long-chain fatty acid synthesis. In conclusion, VPA supplementation altered lipid metabolism, especially fatty acid oxidation and lipid synthesis, in cisplatin-treated MDA-MB-231 TNBC cells. This metabolic reprogramming might reduce cisplatin resistance. This finding may lead to the discovery of new therapeutic targets, which might reduce side effects and counter drug tolerance in TNBC patients.

6.
Cells ; 11(3)2022 02 07.
Article in English | MEDLINE | ID: mdl-35159387

ABSTRACT

The synthetic fatty acid 2-hydroxyoleic acid (2OHOA) has been extensively investigated as a cancer therapy mainly based on its regulation of membrane lipid composition and structure, activating various cell fate pathways. We discovered, additionally, that 2OHOA can uncouple oxidative phosphorylation, but this has never been demonstrated mechanistically. Here, we explored the effect of 2OHOA on mitochondria isolated by ultracentrifugation from U118MG glioblastoma cells. Mitochondria were analyzed by shotgun lipidomics, molecular dynamic simulations, spectrophotometric assays for determining respiratory complex activity, mass spectrometry for assessing beta oxidation and Seahorse technology for bioenergetic profiling. We showed that the main impact of 2OHOA on mitochondrial lipids is their hydroxylation, demonstrated by simulations to decrease co-enzyme Q diffusion in the liquid disordered membranes embedding respiratory complexes. This decreased co-enzyme Q diffusion can explain the inhibition of disjointly measured complexes I-III activity. However, it doesn't explain how 2OHOA increases complex IV and state 3 respiration in intact mitochondria. This increased respiration probably allows mitochondrial oxidative phosphorylation to maintain ATP production against the 2OHOA-mediated inhibition of glycolytic ATP production. This work correlates 2OHOA function with its modulation of mitochondrial lipid composition, reflecting both 2OHOA anticancer activity and adaptation to it by enhancement of state 3 respiration.


Subject(s)
Antineoplastic Agents , Adenosine Triphosphate , Antineoplastic Agents/pharmacology , Mitochondria/metabolism , Oleic Acids , Respiration
7.
Front Biosci (Landmark Ed) ; 27(1): 35, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35090340

ABSTRACT

BACKGROUND: The conserved stem cell signaling network canonical Wingless (WNT) plays important roles in development and disease. Aberrant activation of this pathway has been linked to tumor progression and resistance to therapy. Industry and academia have substantially invested in developing substances, which can efficiently and specifically block the WNT signaling pathway. However, a clear clinical proof of the efficacy of this approach is still missing. Studies on the metabolomics dysregulation of cancer cells have led to innovations in oncological diagnostics. In addition, modulation of cancer cell metabolome is at the base of promising clinical oncology trials currently underway. While onco-protein activation can have profound metabolic outcomes, the involvement of stem cell signals, such as the WNT pathway, in tumor cell metabolomics is yet insufficiently characterized. MATERIAL AND METHODS: We determined live cell metabolism and bioenergetics in pathophysiological relevant, WNT-dependent glioblastoma stem cell (GSC) models. We quantified those parameters in cells with canonical WNT activity and in isogenic cells where WNT activity had been inhibited by short hairpin RNA against ß-catenin. Furthermore, we applied computational analysis of RNA sequencing to verify our functional findings in independent GSCs cohorts. RESULTS: The investigated collection of disease models allows the separation in tumors with low, moderate and high base line metabolic activity. Suppression of canonical WNT signaling led to significant reduction of total, mitochondrial, and glycolytic ATP production rates. Elevated canonical WNT transcription signature in GSCs positively correlated with transcription levels of mitochondrial ATP synthesis, whereas non-canonical WNT gene expression signature did not. CONCLUSION: The applied disease modeling technology allows the recapitulation of inter-tumoral heterogeneous metabolic properties of glioblastoma. Our data show for the first time that inhibition of canonical WNT signaling in alive GSCs functionally correlates with energy inhibition and glucose homeostasis. As this correlation occurs in GSCs from different transcriptional or epigenetic transcriptional subtypes, our results suggest that developing therapies directed against glycolysis/ATP-synthesis may be a promising strategy to overcome therapy resistance due to inter-tumoral heterogeneity and offers starting point to impair downstream signal WNT.


Subject(s)
Glioblastoma , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Glioblastoma/pathology , Glycolysis , Humans , Neoplastic Stem Cells/pathology , Wnt Signaling Pathway , beta Catenin/metabolism
8.
EMBO Mol Med ; 13(10): e14554, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34486811

ABSTRACT

This work employs adult polyglucosan body disease (APBD) models to explore the efficacy and mechanism of action of the polyglucosan-reducing compound 144DG11. APBD is a glycogen storage disorder (GSD) caused by glycogen branching enzyme (GBE) deficiency causing accumulation of poorly branched glycogen inclusions called polyglucosans. 144DG11 improved survival and motor parameters in a GBE knockin (Gbeys/ys ) APBD mouse model. 144DG11 reduced polyglucosan and glycogen in brain, liver, heart, and peripheral nerve. Indirect calorimetry experiments revealed that 144DG11 increases carbohydrate burn at the expense of fat burn, suggesting metabolic mobilization of pathogenic polyglucosan. At the cellular level, 144DG11 increased glycolytic, mitochondrial, and total ATP production. The molecular target of 144DG11 is the lysosomal membrane protein LAMP1, whose interaction with the compound, similar to LAMP1 knockdown, enhanced autolysosomal degradation of glycogen and lysosomal acidification. 144DG11 also enhanced mitochondrial activity and modulated lysosomal features as revealed by bioenergetic, image-based phenotyping and proteomics analyses. As an effective lysosomal targeting therapy in a GSD model, 144DG11 could be developed into a safe and efficacious glycogen and lysosomal storage disease therapy.


Subject(s)
Glycogen Storage Disease , Nervous System Diseases , Animals , Glucans , Glycogen , Mice
9.
Biochem J ; 478(10): 1879-1883, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34029365

ABSTRACT

This commentary discusses general concepts introduced in the article 'Bulk autophagy induction and life extension is achieved when iron is the only limited nutrient in Saccharomyces cerevisiae' by Montella-Manuel et al. (Biochem J (2021) 478: 811-837). Montella-Manuel et al. show that like central carbon metabolism, iron metabolism is also closely implicated in autophagy-mediated life extension via the TORC2 activator Ypk1p and the iron regulator Aft1p. While not being an iron-sulfur cluster protein, Aft1p interacts with such proteins and thus senses the redox status of the cell, which, similar to amino acids and AMP, reports its energetic status. Furthermore, glucose and iron deficiencies are interrelated as the diauxic shift in glucose depleted cells requires iron uptake for activating respiration in the absence of fermentation.


Subject(s)
Iron-Sulfur Proteins , Saccharomyces cerevisiae Proteins , Iron/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism
11.
Int J Mol Sci ; 21(7)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230887

ABSTRACT

The cell membrane contains a variety of receptors that interact with signaling molecules. However, agonist-receptor interactions not always activate a signaling cascade. Amphitropic membrane proteins are required for signal propagation upon ligand-induced receptor activation. These proteins localize to the plasma membrane or internal compartments; however, they are only activated by ligand-receptor complexes when both come into physical contact in membranes. These interactions enable signal propagation. Thus, signals may not propagate into the cell if peripheral proteins do not co-localize with receptors even in the presence of messengers. As the translocation of an amphitropic protein greatly depends on the membrane's lipid composition, regulation of the lipid bilayer emerges as a novel therapeutic strategy. Some of the signals controlled by proteins non-permanently bound to membranes produce dramatic changes in the cell's physiology. Indeed, changes in membrane lipids induce translocation of dozens of peripheral signaling proteins from or to the plasma membrane, which controls how cells behave. We called these changes "lipid switches", as they alter the cell's status (e.g., proliferation, differentiation, death, etc.) in response to the modulation of membrane lipids. Indeed, this discovery enables therapeutic interventions that modify the bilayer's lipids, an approach known as membrane-lipid therapy (MLT) or melitherapy.


Subject(s)
Cell Membrane/metabolism , Lipid Bilayers/metabolism , Membrane Lipids/metabolism , Membrane Proteins/metabolism , Animals , Biophysical Phenomena , Disease , Humans , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Membrane Proteins/chemistry , Models, Biological , Protein Binding , Protein Transport , Signal Transduction
12.
Biosci Rep ; 39(1)2019 01 31.
Article in English | MEDLINE | ID: mdl-30602451

ABSTRACT

This work tests bioenergetic and cell-biological implications of the synthetic fatty acid Minerval (2-hydroxyoleic acid), previously demonstrated to act by activation of sphingomyelin synthase in the plasma membrane (PM) and lowering of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) and their carcinogenic signaling. We show here that Minerval also acts, selectively in cancer cell lines, as an ATP depleting uncoupler of mitochondrial oxidative phosphorylation (OxPhos). As a function of its exposure time, Minerval compromised the capacity of glioblastoma U87-MG cells to compensate for aberrant respiration by up-modulation of glycolysis. This effect was not exposure time-dependent in the lung carcinoma A549 cell line, which was more sensitive to Minerval. Compared with OxPhos inhibitors FCCP (uncoupler), rotenone (electron transfer inhibitor), and oligomycin (F1F0-ATPase inhibitor), Minerval action was similar only to that of FCCP. This similarity was manifested by mitochondrial membrane potential (MMP) depolarization, facilitation of oxygen consumption rate (OCR), restriction of mitochondrial and cellular reactive oxygen species (ROS) generation and mitochondrial fragmentation. Additionally, compared with other OxPhos inhibitors, Minerval uniquely induced ER stress in cancer cell lines. These new modes of action for Minerval, capitalizing on the high fatty acid requirements of cancer cells, can potentially enhance its cancer-selective toxicity and improve its therapeutic capacity.


Subject(s)
Energy Metabolism/drug effects , Lung Neoplasms/drug therapy , Oleic Acids/pharmacology , A549 Cells , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Respiration/drug effects , Electron Transport/drug effects , Glycolysis/drug effects , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mitochondria/drug effects , Mitochondria/pathology , Oxidative Phosphorylation/drug effects , Oxygen Consumption/drug effects , Signal Transduction/drug effects
13.
JCI Insight ; 3(17)2018 09 06.
Article in English | MEDLINE | ID: mdl-30185673

ABSTRACT

Adult polyglucosan body disease (APBD) is a late-onset disease caused by intracellular accumulation of polyglucosan bodies, formed due to glycogen-branching enzyme (GBE) deficiency. To find a treatment for APBD, we screened 1,700 FDA-approved compounds in fibroblasts derived from APBD-modeling GBE1-knockin mice. Capitalizing on fluorescent periodic acid-Schiff reagent, which interacts with polyglucosans in the cell, this screen discovered that the flavoring agent guaiacol can lower polyglucosans, a result also confirmed in APBD patient fibroblasts. Biochemical assays showed that guaiacol lowers basal and glucose 6-phosphate-stimulated glycogen synthase (GYS) activity. Guaiacol also increased inactivating GYS1 phosphorylation and phosphorylation of the master activator of catabolism, AMP-dependent protein kinase. Guaiacol treatment in the APBD mouse model rescued grip strength and shorter lifespan. These treatments had no adverse effects except making the mice slightly hyperglycemic, possibly due to the reduced liver glycogen levels. In addition, treatment corrected penile prolapse in aged GBE1-knockin mice. Guaiacol's curative effects can be explained by its reduction of polyglucosans in peripheral nerve, liver, and heart, despite a short half-life of up to 60 minutes in most tissues. Our results form the basis to use guaiacol as a treatment and prepare for the clinical trials in APBD.


Subject(s)
Glucans/metabolism , Glycogen Storage Disease/drug therapy , Guaiacol/pharmacology , Nervous System Diseases/drug therapy , Animals , Disease Models, Animal , Dual-Specificity Phosphatases/genetics , Fibroblasts , Glucose/metabolism , Glycogen/metabolism , Glycogen Synthase/drug effects , Glycogen Synthase/metabolism , Heart , Kinetics , Liver , Mice , Mice, Inbred C57BL , Mice, Knockout , Peripheral Nerves/metabolism , Phosphorylation , Protein Tyrosine Phosphatases, Non-Receptor , Ubiquitin-Protein Ligases/genetics
14.
Biochem J ; 474(20): 3403-3420, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28827282

ABSTRACT

Glycogen storage disorders (GSDs) are caused by excessive accumulation of glycogen. Some GSDs [adult polyglucosan (PG) body disease (APBD), and Tarui and Lafora diseases] are caused by intracellular accumulation of insoluble inclusions, called PG bodies (PBs), which are chiefly composed of malconstructed glycogen. We developed an APBD patient skin fibroblast cell-based assay for PB identification, where the bodies are identified as amylase-resistant periodic acid-Schiff's-stained structures, and quantified. We screened the DIVERSet CL 10 084 compound library using this assay in high-throughput format and discovered 11 dose-dependent and 8 non-dose-dependent PB-reducing hits. Approximately 70% of the hits appear to act through reducing glycogen synthase (GS) activity, which can elongate glycogen chains and presumably promote PB generation. Some of these GS inhibiting hits were also computationally predicted to be similar to drugs interacting with the GS activator protein phosphatase 1. Our work paves the way to discovering medications for the treatment of PB-involving GSD, which are extremely severe or fatal disorders.


Subject(s)
Fibroblasts/enzymology , Glycogen Storage Disease , Glycogen Synthase/metabolism , Nervous System Diseases , Adult , Drug Evaluation, Preclinical/methods , Female , Glycogen Storage Disease/diagnosis , Glycogen Storage Disease/drug therapy , Glycogen Storage Disease/enzymology , Humans , Male , Nervous System Diseases/diagnosis , Nervous System Diseases/drug therapy , Nervous System Diseases/enzymology
15.
Chem Commun (Camb) ; 53(65): 9121-9124, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28759073

ABSTRACT

The ecto-nucleoside triphosphate diphosphohydrolase-1 (E-NTPDase-1, CD39) enzyme is responsible for the breakdown of extracellular ATP to ADP and then to AMP by a two-step process. Defective CD39 activity has been described in a variety of medical conditions including malignancy and rheumatic diseases and has been proved to be of major diagnostic and clinical importance. Here we show for the first time that a 31P NMR spectroscopy methodology enables the quantification of these two steps in a single blood sample. We have applied this assay to determine the E-NTPDase activity on human mononuclear cells taken from two siblings affected by a stop-codon mutation in the ENTPD1 gene, their obligatory heterozygous parents, and healthy volunteers. The affected subjects presented low ATP breakdown activity, mainly expressed as low AMP production.


Subject(s)
Adenosine Triphosphate/metabolism , Antigens, CD/genetics , Antigens, CD/metabolism , Apyrase/genetics , Apyrase/metabolism , Adenosine Diphosphate/analysis , Adenosine Monophosphate/analysis , Adenosine Triphosphate/analysis , Adult , Codon, Terminator/genetics , Enzyme Assays/methods , Female , Humans , Hydrolysis , Leukocytes, Mononuclear/enzymology , Leukocytes, Mononuclear/metabolism , Magnetic Resonance Spectroscopy/methods , Male , Middle Aged , Mutation/genetics , Phosphates/analysis , Phosphorus Radioisotopes
16.
J Lipid Res ; 58(8): 1598-1612, 2017 08.
Article in English | MEDLINE | ID: mdl-28630259

ABSTRACT

Adult polyglucosan body disease (APBD) is a neurological disorder characterized by adult-onset neurogenic bladder, spasticity, weakness, and sensory loss. The disease is caused by aberrant glycogen branching enzyme (GBE) (GBE1Y329S) yielding less branched, globular, and soluble glycogen, which tends to aggregate. We explore here whether, despite being a soluble enzyme, GBE1 activity is regulated by protein-membrane interactions. Because soluble proteins can contact a wide variety of cell membranes, we investigated the interactions of purified WT and GBE1Y329S proteins with different types of model membranes (liposomes). Interestingly, both triheptanoin and some triacylglycerol mimetics (TGMs) we have designed (TGM0 and TGM5) markedly enhance GBE1Y329S activity, possibly enough for reversing APBD symptoms. We show that the GBE1Y329S mutation exposes a hydrophobic amino acid stretch, which can either stabilize and enhance or alternatively, reduce the enzyme activity via alteration of protein-membrane interactions. Additionally, we found that WT, but not Y329S, GBE1 activity is modulated by Ca2+ and phosphatidylserine, probably associated with GBE1-mediated regulation of energy consumption and storage. The thermal stabilization and increase in GBE1Y329S activity induced by TGM5 and its omega-3 oil structure suggest that this molecule has a considerable therapeutic potential for treating APBD.


Subject(s)
Biomimetic Materials/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Glycogen Debranching Enzyme System/metabolism , Glycogen Storage Disease/drug therapy , Nervous System Diseases/drug therapy , Triglycerides/metabolism , Amino Acid Sequence , Biomimetic Materials/therapeutic use , Enzyme Stability , Glycogen Debranching Enzyme System/chemistry , Glycogen Debranching Enzyme System/genetics , Humans , Mutagenesis, Site-Directed , Mutation , Protein Binding/drug effects , Temperature
17.
Dis Model Mech ; 10(5): 645-654, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28213588

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an incurable motor neurodegenerative disease caused by a diversity of genetic and environmental factors that leads to neuromuscular degeneration and has pathophysiological implications in non-neural systems. Our previous work showed abnormal levels of mRNA expression for biomarker genes in non-neuronal cell samples from ALS patients. The same genes proved to be differentially expressed in the brain, spinal cord and muscle of the SOD1G93A ALS mouse model. These observations support the idea that there is a pathophysiological relevance for the ALS biomarkers discovered in human mesenchymal stem cells (hMSCs) isolated from bone marrow samples of ALS patients (ALS-hMSCs). Here, we demonstrate that ALS-hMSCs are also a useful patient-based model to study intrinsic cell molecular mechanisms of the disease. We investigated the ALS-hMSC response to oxidative DNA damage exerted by neocarzinostatin (NCS)-induced DNA double-strand breaks (DSBs). We found that the ALS-hMSCs responded to this stress differently from cells taken from healthy controls (HC-hMSCs). Interestingly, we found that ALS-hMSC death in response to induction of DSBs was dependent on autophagy, which was initialized by an increase of phosphorylated (p)AMPK, and blocked by the class III phosphoinositide 3-kinase (PI3K) and autophagy inhibitor 3-methyladenine (3MeA). ALS-hMSC death in response to DSBs was not apoptotic as it was caspase independent. This unique ALS-hMSC-specific response to DNA damage emphasizes the possibility that an intrinsic abnormal regulatory mechanism controlling autophagy initiation exists in ALS-patient-derived hMSCs. This mechanism may also be relevant to the most-affected tissues in ALS. Hence, our approach might open avenues for new personalized therapies for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Autophagy , Bone Marrow Cells/metabolism , DNA Breaks, Double-Stranded , Mesenchymal Stem Cells/metabolism , Amyotrophic Lateral Sclerosis/genetics , Humans
18.
Rare Dis ; 3(1): e1068978, 2015.
Article in English | MEDLINE | ID: mdl-26619007

ABSTRACT

Pompe disease, an inherited deficiency of lysosomal acid α-glucosidase (GAA), is a severe metabolic myopathy with a wide range of clinical manifestations. It is the first recognized lysosomal storage disorder and the first neuromuscular disorder for which a therapy (enzyme replacement) has been approved. As GAA is the only enzyme that hydrolyses glycogen to glucose in the acidic environment of the lysosome, its deficiency leads to glycogen accumulation within and concomitant enlargement of this organelle. Since the introduction of the therapy, the overall understanding of the disease has progressed significantly, but the pathophysiology of muscle damage is still not fully understood. The emerging complex picture of the pathological cascade involves disturbance of calcium homeostasis, mitochondrial abnormalities, dysfunctional autophagy, accumulation of toxic undegradable materials, and accelerated production of lipofuscin deposits that are unrelated to aging. The relationship of Pompe disease to other lysosomal storage disorders and potential therapeutic interventions for Pompe disease are discussed.

19.
Hum Mol Genet ; 24(20): 5667-76, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26199317

ABSTRACT

Glycogen branching enzyme 1 (GBE1) plays an essential role in glycogen biosynthesis by generating α-1,6-glucosidic branches from α-1,4-linked glucose chains, to increase solubility of the glycogen polymer. Mutations in the GBE1 gene lead to the heterogeneous early-onset glycogen storage disorder type IV (GSDIV) or the late-onset adult polyglucosan body disease (APBD). To better understand this essential enzyme, we crystallized human GBE1 in the apo form, and in complex with a tetra- or hepta-saccharide. The GBE1 structure reveals a conserved amylase core that houses the active centre for the branching reaction and harbours almost all GSDIV and APBD mutations. A non-catalytic binding cleft, proximal to the site of the common APBD mutation p.Y329S, was found to bind the tetra- and hepta-saccharides and may represent a higher-affinity site employed to anchor the complex glycogen substrate for the branching reaction. Expression of recombinant GBE1-p.Y329S resulted in drastically reduced protein yield and solubility compared with wild type, suggesting this disease allele causes protein misfolding and may be amenable to small molecule stabilization. To explore this, we generated a structural model of GBE1-p.Y329S and designed peptides ab initio to stabilize the mutation. As proof-of-principle, we evaluated treatment of one tetra-peptide, Leu-Thr-Lys-Glu, in APBD patient cells. We demonstrate intracellular transport of this peptide, its binding and stabilization of GBE1-p.Y329S, and 2-fold increased mutant enzymatic activity compared with untreated patient cells. Together, our data provide the rationale and starting point for the screening of small molecule chaperones, which could become novel therapies for this disease.


Subject(s)
Glycogen Debranching Enzyme System/chemistry , Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease Type IV/enzymology , Glycogen Storage Disease/enzymology , Mutation, Missense , Nervous System Diseases/enzymology , Peptides/therapeutic use , Amino Acid Sequence , Computational Biology , Glycogen Debranching Enzyme System/drug effects , Glycogen Debranching Enzyme System/metabolism , Glycogen Storage Disease/drug therapy , Glycogen Storage Disease/genetics , Glycogen Storage Disease Type IV/genetics , Humans , Molecular Sequence Data , Nervous System Diseases/drug therapy , Nervous System Diseases/genetics , Protein Structure, Tertiary , Sequence Alignment
20.
J Neurol ; 262(10): 2346-51, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26194201

ABSTRACT

Adult polyglucosan body disease (APBD) is a rare glycogenosis manifesting progressive spastic paraparesis, sensorimotor polyneuropathy and neurogenic bladder. Misdiagnosis of APBD may lead to unnecessary investigations and to potentially harmful therapeutic interventions. To examine the frequency of misdiagnosis of APBD, we retrospectively reviewed the clinical data of 30 patients diagnosed between 1991 and 2013. Diagnosis was based on the combination of typical clinical and imaging findings, reduced glycogen branching enzyme activity, and the presence of p.Y326S GBE1 mutation. Initial symptoms started in the 5th-6th decade with bladder dysfunction (47 %), gait problems (33 %) or both. Diagnosis of APBD was delayed by 6.8 (±4.8) years. Consistent signs at diagnosis were spasticity in the legs (93 %), decreased or absent ankle reflexes (100 %), bilateral extensor plantar response (100 %) and distal sensory deficit (80 %). Nerve conduction study showed invariable sensorimotor polyneuropathy, and MRI demonstrated cervical spinal cord atrophy (100 %) and leukoencephalopathy (97 %). All 30 patients were initially misdiagnosed. Common misdiagnoses included cerebral small vessel disease (27 %), multiple sclerosis (17 %), amyotrophic lateral sclerosis (17 %) and peripheral neuropathies (20 %). Consequently, 27 % received inappropriate therapy. In addition, lower urinary tract symptoms in 60 % of men were attributed solely to prostatic disorders but did not respond to medical treatment or prostatectomy. These findings suggest that despite limited clinical variability, APBD is invariably misdiagnosed and patients are often mistreated. Physicians' unfamiliarity with the typical clinical and imaging features of APBD appears as the main reason for misdiagnosis.


Subject(s)
Delayed Diagnosis , Diagnostic Errors , Glycogen Storage Disease/diagnosis , Nervous System Diseases/diagnosis , Adult , Aged , Female , Glycogen Storage Disease/therapy , Humans , Male , Middle Aged , Nervous System Diseases/therapy , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...